Куда течет река времени
Шрифт:
Теория тяготения Эйнштейна утверждает, что тяготеющие тела искривляют вокруг себя четырехмерное пространство-время. Мы уже говорили, что трудно наглядно вообразить себе простое пространство-время, а тем более сложно это сделать, когда оно еще и искривленное. Но для математика или физика-теоретика и нет нужды в наглядных представлениях. Для него искривление означает изменение геометрических свойств фигур или тел. Так, если на плоскости отношение длины окружности к ее диаметру равно 2, то на искривленной поверхности или в «кривом» пространстве это не так. Геометрические соотношения там отличаются от соотношений в геометрии
Тот факт, что трехмерное пространство может быть искривленным, теоретически было открыто в начале прошлого века русским математиком Н. Лобачевским и в то же время венгерским математиком Я. Больяи. В середине прошлого века немецкий геометр Г. Риман стал рассматривать в математике «искривленные» пространства не только с тремя измерениями, но и четырехмерные и вообще с любым числом измерений. С той поры геометрию искривленного пространства стали называть неевклидовой. Первооткрыватели неевклидовой геометрии не знали, в каких конкретно условиях может проявиться их геометрия, хотя отдельные догадки об этом высказывали. Созданный ими и их последователями математический аппарат был использован при формулировке общей теории относительности.
Итак, согласно основной идее А. Эйнштейна тяготеющие массы искривляют вокруг себя пространство-время. Рассмотрим теперь другие тела с очень маленькой массой (физики их называют «пробными»), которые движутся в этом искривленном пространстве-времени. Они по-прежнему движутся по геодезическим линиям. Но если в неискривленном пространстве-времени геодезические линии — это прямые, то здесь — в искривленном — они кривые. Вот это движение — движение по искривленным траекториям и с переменной скоростью — мы и воспринимаем как движение под действием сил тяготения. Таким образом, поле тяготения объясняется «искривленной» геометрией пространства-времени.
Известные американские физики Ч. Минзер, К. Торн и Дж. Уилер свою монографию об общей теории относительности, содержащую 1279 страниц большого формата, начинают со следующего шутливого рассказа. «Однажды в саду под яблоней лежал студент и размышлял о том, как по-разному понимали гравитацию Ньютон и Эйнштейн. Неожиданно он вздрогнул: рядом упало яблоко. Студент взглянул на него и заметил, как по его поверхности забегали муравьи. Ему стало любопытно, и он решил выяснить, по какому принципу муравьи выбирают свой путь.
Его взгляд упал на двух муравьев, отправившихся из одной и той же точки в направлениях, слегка отличающихся друг от друга. На этот раз их пути случайно пролегли вблизи углубления в верхней части яблока, причем по разные стороны от него. Каждый из муравьев добросовестно следовал вдоль своей геодезической. Каждый старался бежать по яблочной кожуре как можно прямее. Однако из-за собственной кривизны углубления их пути сначала пересеклись, а затем разошлись в совершенно разных направлениях.
«Можно ли придумать более удачную иллюстрацию для геометрической теории тяготения Эйнштейна? — задумчиво произнес студент. — Муравьи движутся так, будто их притягивает к яблочному черенку. Теперь я гораздо лучше понимаю, о чем говорится в этой книге».
И далее авторы заключают: «Пространство воздействует на материю, «указывая» ей, как двигаться. Материя,
В этом объяснении все необычно — и неподдающееся наглядному представлению искривленное четырехмерное пространство-время, и необычность объяснения силы тяготения геометрическими причинами. Физика здесь впервые напрямую связывается с геометрией. И, знакомясь с успехами физики, чем ближе мы подходим к нашей эпохе, тем необычнее становятся ее открытия, а понятия все менее поддаются наглядным представлениям. И ничего не поделаешь! Природа сложна, и раз уж мы проникаем все глубже в ее тайны, то приходится мириться с тем, что это требует все больших усилий, в том числе и от нашего воображения. Наверное, слово «мириться» не очень здесь годится, скорее надо подчеркнуть, что становится все интереснее, хотя и труднее.
Сообщим читателю еще два факта из теории тяготения Эйнштейна.
В теории Ньютона поле тяготения определяется только массой создающего его тела. По теории Эйнштейна в создании тяготения участвуют все виды энергии — это и давление, и натяжение, если они имеются в теле, и электромагнитное поле. Второй важный факт — теория предсказывает, что при ускоренном движении тяготеющих масс должны излучаться волны тяготения подобно тому, как при ускоренном движении зарядов излучаются электромагнитные волны. (Жаль, но мы не будем здесь подробнее говорить о том, что такое волны тяготения.)
Оба эти предсказания теории Эйнштейна, отличающие ее от теории Ньютона, могут проявляться только в экзотических условиях, а в обычных ситуациях эффекты, связанные с этими предсказаниями, очень слабы и совершенно незаметны. Физики часто тяготение называют гравитацией, так иногда будем поступать и мы.
В обычных условиях теория Эйнштейна практически совпадает с теорией Ньютона. А в очень сильных гравитационных полях или же в полях, быстроменяющихся со временем, теория Эйнштейна приводит к выводам, существенно отличающимся от выводов ньютоновской Об этом мы еще поговорим.
Сразу после создания своей теории А. Эйнштейн указал на три эффекта, которые хотя и малы в обычных ситуациях, но все же могут быть проверены астрономическими наблюдениями и подтвердить правильность новой теории.
Первые два эффекта связаны с небольшими отклонениями в движении планет вокруг Солнца и лучей света, проходящих вблизи него, от движения по ньютоновским законам. Сравнение с данными наблюдений обнаружило эти эффекты и полностью подтвердило правильность новой теории. Кстати, наблюдения эффектов Эйнштейна показали, что пространство вблизи Солнца действительно несколько искривлено и его геометрия слегка отличается от геометрия Евклида.
Третий эффект касается времени, и поэтому мы на нем остановимся подробнее.
Теория Эйнштейна предсказывает: в сильном поле тяготения время течет медленнее, чем вне его. Это означает, например, что любые часы у поверхности Солнца идут медленнее, чем на поверхности Земли, ибо тяготение Солнца больше, чем тяготение Земли. По аналогичной причине часы на некоторой высоте над поверхностью Земли идут чуть быстрее, чем на самой поверхности.
Для проверки этого интереснейшего эффекта проведено множество экспериментов, и мы расскажем о некоторых из них. Начнем с наблюдений замедления времени на Солнце.