Куда течет река времени
Шрифт:
Итак, я вычислил, с какой силой притягивает центральная масса какое-либо тело, находящееся на ее поверхности. Результат оказался примечательным. Если радиус массы велик, то ответ совпадал с классическим законом Ньютона. Но когда принималось, что та же масса сжата до все меньшего и меньшего радиуса, постепенно проявлялись отклонения от закона Ньютона — сила притяжения получалась пусть незначительно, но несколько большей. При совершенно фантастических же сжатиях отклонения были заметнее. Но самое интересное, что для каждой массы существует свой определенный радиус, при сжатии до которого сила тяготения стремилась к бесконечности! Такой радиус в теории был назван гравитационным радиусом. Гравитационный радиус тем больше, чем больше
У меня, конечно, возник вопрос: а что произойдет, если масса будет иметь радиус меньше гравитационного? В этом случае, казалось на первый взгляд, сила притяжения должна быть больше бесконечной. Но это же явный абсурд! Конечно, я пошел к учителю, который сказал, что считается, будто таких тел быть не может, хотя сам он обоснованного ответа не встречал. Потом я узнал, что не только А. Зельманов, но и никто в мире этой задачей не занимался. Вопрос стоял как-то в стороне от магистральной линии развития науки. Столь плотных тел астрономы тогда не знали. Рассуждения на эту тему считались беспочвенными, да почти никто из них тогда и не знал общей теории относительности. Астрономы считали, что эта наука им совсем ни к чему, поскольку она применима к сверхсильным полям тяготения, а в то время такие поля во Вселенной были неизвестны. Мне же эта проблема запомнилась, и когда я поступил в аспирантуру к А. Зельманову, то начал серьезно ее изучать.
Сначала мне казалось, что действительно тело не может сжаться до размеров меньше гравитационного радиуса. Но вскоре понял, что ошибаюсь, и позже скажу, в чем была причина ошибки.
Еще в 1939 году американские физики Р. Оппенгеймер (тот самый, кто потом делал американскую атомную бомбу) и X. Снайдер дали точное математическое описание того, что будет происходить с массой, сжимающейся под действием собственного тяготения до все меньших размеров. Если сферическая масса, уменьшаясь, сожмется до размеров, равных или меньших, чем гравитационный радиус, то потом никакое внутреннее давление вещества, никакие внешние силы не смогут остановить дальнейшее сжатие. Действительно, ведь если бы при размерах, равных гравитационному радиусу, сжатие остановилось бы, то силы тяготения на поверхности массы были бы бесконечно велики и ничто с ними не могло бы бороться, они тут же заставят массу сжиматься дальше. Но при стремительном сжатии — падении вещества к центру — силы тяготения не чувствуются.
Всем известно, что при свободном падении наступает состояние невесомости и любое тело, не встречая опоры, теряет вес. То же происходит и со сжимающейся массой: на ее поверхности сила тяготения — вес — не ощущается. После достижения размеров гравитационного радиуса остановить сжатие массы нельзя. Она неудержимо стремится к центру. Такой процесс физики называют гравитационным коллапсом, а результатом является возникновение черной дыры. Именно внутри сферы с радиусом, равным гравитационному, тяготение столь велико, что не выпускает даже свет. Эту область Дж. Уилер назвал в 1968 году черной дырой.
Название оказалось крайне удачным и было моментально подхвачено всеми специалистами. Границу черной дыры называют горизонтом событий. Название это понятно, ибо из-под этой границы не выходят к внешнему наблюдателю никакие сигналы, которые могли бы сообщить сведения о происходящих внутри событиях. О том, что происходит внутри черной дыры, внешний наблюдатель никогда ничего не узнает.
Итак, вблизи черной дыры необычно велики силы тяготения, но это еще не все. Мы помним, что в сильном поле тяготения меняются геометрические свойства пространства и замедляется течение времени.
Около горизонта событий кривизна пространства становится очень сильной. Чтобы представить себе характер этого искривления, поступим следующим образом. Заменим в наших рассуждениях трехмерное пространство
Обратимся теперь к темпу течения времени. Чем ближе к горизонту событий, тем медленнее течет время с точки зрения внешнего наблюдателя. На границе черной дыры его бег и вовсе замирает. Такую ситуацию можно сравнить с течением воды у берега реки, где ток воды замирает. Это образное сравнение принадлежит немецкому профессору Д. Либшеру, вместе с которым мы недавно описывали черную дыру.
Но совсем иная картина представляется наблюдателю, который в космическом корабле отправляется в черную дыру. Огромное поле тяготения на ее границе разгоняет падающий корабль до скорости, равной скорости света. И тем не менее далекому наблюдателю кажется, что падение корабля затормаживается и полностью замирает на границе черной дыры. Ведь здесь, с его точки зрения, замирает само время.
С приближением скорости падения к скорости света время на корабле также замедляет свой бег, как и на любом быстро летящем теле. И вот это замедление побеждает (компенсирует) замирание падения корабля. Растягивающаяся до бесконечности картина приближения корабля к границе черной дыры из-за все большего и большего растягивания секунд на падающем корабле измеряется конечным числом этих все удлиняющихся (с точки зрения внешнего наблюдателя) секунд. По часам падающего наблюдателя или по его пульсу до пересечения границы черной дыры протекло вполне конечное число секунд. Бесконечно долгое падение корабля по часам далекого наблюдателя уместилось в очень короткое время падающего наблюдателя. Бесконечное для одного стало конечным для другого.
Вот уж поистине фантастическое изменение представлений о течении времени. То, что мы говорили о наблюдателе на космическом корабле, относится и к воображаемому наблюдателю на поверхности сжимающегося шара, когда образуется черная дыра.
Теперь читателю, наверное, понятна моя первоначальная ошибочная убежденность, что в черную дыру нельзя попасть. Я смотрел на ход этого процесса по времени (по часам) внешнего наблюдателя и видел, что он бесконечно долгий, а надо было смотреть по времени падающего наблюдателя. По этому времени падение внутрь дыры происходит за конечное время и даже очень быстро.
Наблюдатель, упавший в черную дыру, никогда не сможет оттуда выбраться, как бы ни были мощны двигатели его корабля. Он не сможет послать оттуда и никаких сигналов, никаких сообщений. Ведь даже свет — самый быстрый вестник в природе — оттуда не выходит. Для внешнего наблюдателя само падение корабля растягивается по его часам до бесконечности. Значит, то, что будет происходить с падающим наблюдателем и его кораблем внутри черной дыры, протекает уже вне времени внешнего наблюдателя (после его бесконечности по времени). В этом смысле черные дыры представляют собой дыры во времени Вселенной.