Чтение онлайн

на главную

Жанры

Курс теоретической астрофизики
Шрифт:

Картина явлений, наблюдаемых при вспышке звезды типа UV Кита, в общих чертах согласуется с представлением о том, что во время вспышки к излучению звезды добавляется излучение горячего газа. В частности, в пользу такого представления говорит наличие в спектре бальмеровского скачка, имеющего рекомбинационное происхождение. Однако во время максимума блеска в излучение может входить и некоторая нетепловая компонента.

При теоретическом исследовании вспышек сначала предполагалось, что они происходят в хромосфере, причём область вспышки прозрачна для излучения в непрерывном спектре и непрозрачна для излучения в линиях. Однако результаты расчёта оптических характеристик излучающего газа для этого случая (при Te25 000 K

и ne10^1^3 см^3) удаётся согласовать с наблюдательными данными лишь для небольшой части вспышек. К тому же объём области вспышек оказывается чрезмерно большим.

Поэтому потом стали считать, что вспышка происходит в более глубоких слоях звезды — в переходной области между хромосферой и фотосферой (где ne10^1…10^1 см^3). Излучение газа при таких условиях отличается двумя существенными особенностями: 1) при низких температурах (меньше 10 000 K) к излучению атома водорода добавляется излучение его отрицательного иона; 2) при более высоких температурах газ становится частично непрозрачным в непрерывном спектре (вследствие быстрого роста населённостей уровней с повышением температуры). Расчёты показывают, что в данном случае теория позволяет объяснить основные наблюдаемые характеристики вспышек: диаграмму U—B, B—V бальмеровские скачки и др. При этом геометрическая толщина излучающего слоя оказывается порядка 10…100 км, а его площадь для большинства вспышек не превышает 1% площади диска звезды.

В поисках причины звёздных вспышек было обращено внимание на то, что во многих отношениях они подобны вспышкам на Солнце, хотя и гораздо больше последних по масштабу. Исследование же солнечных вспышек показывает, что вспышка в видимой области спектра представляет собой вторичное явление. Ей предшествует кратковременное выделение больших количеств энергии (которое условно можно назвать «взрывом»), приводящее к возникновению потоков быстрых частиц, рентгеновского и ультрафиолетового излучения. Проникая в глубь атмосферы, они нагревают газ, вызывая вспышку в оптической области спектра. Можно думать, что так же развивается и звёздная вспышка. Подтверждением этого являются одновременные наблюдения рентгеновских и оптических вспышек на звёздах.

В случае солнечных вспышек можно, по-видимому, считать, что «взрыв», происходит за счёт магнитной энергии. По аналогии ожидается, что подобные «взрывы» происходят и при звёздных вспышках, причём магнитные поля на звёздах должны быть более сильными, чем на Солнце.

Взгляды В. А. Амбарцумяна, который видит причину вспышек звёзд в выбросе и распаде дозвёздного вещества, уже были изложены выше (подробнее см. [4] и [6]).

Важное значение для выяснения путей звёздной эволюции имеет изучение вспыхивающих звёзд в звёздных агрегатах (т. е. в скоплениях и ассоциациях). Наблюдения таких звёзд производились на обсерваториях в Бюракане (СССР), Тонанцинтле (Мексика) и др. Мексиканский астрофизик Г. Аро показал, что звёзды в своём развитии переходят от стадии T Тельца (с возрастом до 10 лет) к стадии вспыхивающих звёзд (возраст которых порядка 10 лет).

Большое исследование вспыхивающих звёзд в Плеядах было предпринято В. А. Амбарцумяном и его сотрудниками. Скажем в нескольких словах о выполненной ими статистической обработке наблюдательных данных [7].

Будем считать, что частота вспышек (т.е. среднее число вспышек за единицу времени) для всех звёзд агрегата одинакова и вспышки распределены во времени случайно. Тогда согласно закону Пуассона вероятность того, что за время наблюдений t звезда вспыхнет k раз будет равна

p

k

=

e

– t

(t)k

k!

,

(28.42)

где — частота вспышек. Если N — полное число вспыхивающих

звёзд в агрегате, то математическое ожидание числа звёзд, испытавших k вспышек, равно

n

k

=

N

p

k

.

(28.43)

Полагая в формуле (28.42) последовательно k=0, 1, 2 и пользуясь (28.43), получаем

n

=

n^2

2n

.

(28.44)

Примем приближённо, что nk есть наблюдаемое число звёзд, вспыхнувших k раз. Тогда формула (28.44) позволяет определить число звёзд n, не испытавших за время наблюдений ни одной вспышки, если известны из наблюдений числа n и n звёзд, вспыхнувших соответственно по одному и по два раза. Прибавляя к числу n суммарное число вспыхнувших за время t звёзд, мы получаем полное число вспыхивающих звёзд в агрегате.

Как уже сказано, при выводе формулы (28.44) предполагалось, что все звёзды вспыхивают с одной и той же частотой. Если же частоты вспышек для разных звёзд различны, то эта формула даст для величины n лишь нижний предел. Можно показать, что в случае различной частоты вспышек при довольно общих предположениях величина n удовлетворяет неравенствам

n^2

n

>=

n

>=

n^2

2n

.

(28.45)

Применение приведённых формул к Плеядам привело к заключению, что в них содержится около 1000 вспыхивающих звёзд. По видимому, это число близко к полному числу звёзд в Плеядах. Однако не следует думать, что все звёзды скопления являются вспыхивающими. Как выяснилось при тщательном исследовании, доля вспыхивающих звёзд возрастает при переходе к более слабым звёздам. Иными словами, вспышечная активность раньше уменьшается у звёзд большей светимости (если считать, что все звёзды скопления имеют одинаковый возраст). Такой вывод представляет значительный интерес для звёздной космогонии.

§ 29. Новые звёзды

1. Наблюдательные данные.

Открытие каждой яркой новой звезды является важным событием в астрономии и они обычно очень интенсивно исследуются многими обсерваториями. Поэтому наблюдательные данные о новых звёздах весьма обширны. Здесь мы укажем некоторые из этих данных, подробности же можно найти в специальных монографиях (см. [2] и [3]).

Из наблюдений прежде всего пытаются определить кривую блеска новой звезды. Эти кривые весьма различны для разных звёзд. Однако их общей чертой является чрезвычайно быстрый подъём блеска и очень медленное его падение, часто сопровождаемое большими флуктуациями. «Возгорание» новой звезды совершается обычно в течение нескольких суток, а «угасание» — в течение нескольких лет. В конце концов звезда возвращается к блеску, мало отличающемуся от того, какой она имела до вспышки. В виде примера на рис. 37 приведена кривая блеска типичной новой звезды.

Рис. 37

В момент максимума блеска новые звёзды являются самыми яркими объектами Галактики (если не считать сверхновых). В среднем их абсолютные величины в максимуме равны -7m В своём «нормальном» состоянии, т.е. до вспышки и через много лет после вспышки, новые звёзды имеют абсолютные величины около +5m (с довольно большой дисперсией). Следовательно, средняя амплитуда изменения блеска новой звезды составляет 12m. В табл. 46 приведены некоторые сведения о наиболее изученных новых звёздах.

Поделиться:
Популярные книги

Дайте поспать!

Матисов Павел
1. Вечный Сон
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать!

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Авиатор: назад в СССР 14

Дорин Михаил
14. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 14

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник