Чтение онлайн

на главную

Жанры

Курс теоретической астрофизики
Шрифт:

I

r

sin

r

I

=-

I

+

.

(1.20)

В рассматриваемом случае уравнение лучистого равновесия (1.17) может быть заменено другим, более простым уравнением, имеющим тот же физический смысл. Проинтегрировав уравнение (1.20) по всем частотам и по всем направлениям, получаем

1

r^2

d

dr

r^2

0

H

d

=-

0

d

I

d

+

4

0

d

.

(1.21)

Из (1.21)

видно, что если выполняется уравнение (1.17), то должно выполняться и уравнение

d

dr

r^2

0

H

d

=

0.

(1.22)

Из (1.22) следует

0

H

d

=

C

r^2

,

где C — некоторая постоянная, определяемая источниками энергии звезды.

Таким образом, полный поток излучения (т.е. поток излучения, проинтегрированный по всему спектру) в сферически-симметричной фотосфере обратно пропорционален квадрату расстояния от центра звезды. Соотношение (1.23), как и уравнение (1.17), является следствием отсутствия источников и стоков энергии в фотосфере.

Как уже говорилось, почти все звёзды обладают фотосферами, толщина которых очень мала по сравнению с радиусом звезды. Для этих звёзд уравнения (1.20) и (1.23) могут быть сильно упрощены. Этого нельзя сделать лишь для звёзд особых типов (например, для звёзд типа Вольфа — Райе).

Рис. 2

Если толщина фотосферы гораздо меньше радиуса звезды, то фотосферные слои могут считаться не сферическими, а плоскопараллельными (рис. 2). В этом случае угол не меняется вдоль луча и вместо уравнения (1.20) получаем

cos

dI

dr

=-

I

+

.

(1.24)

Так как расстояние r от центра звезды меняется в фотосфере в очень небольших пределах, то вместо уравнения (1.23) имеем

0

H

d

=

const.

(1.25)

Таким образом, при рассмотрении поля излучения в фотосферах «обычных» звёзд следует пользоваться уравнениями (1.24) и (1.17) или уравнениями (1.24) и (1.25).

§ 2.

Теория фотосфер при коэффициенте поглощения, не зависящем от частоты

1. Основные уравнения.

Первоначально в теории фотосфер делалось предположение о независимости коэффициента поглощения от частоты, ведущее к существенному упрощению теории. В дальнейшем, однако, было установлено, что это предположение является весьма грубым. Тем не менее теория фотосфер при коэффициенте поглощения, не зависящем от частоты, продолжает сохранять своё значение, так как она может рассматриваться как первое приближение к более строгой теории.

Считая, что коэффициент поглощения не зависит от частоты (т.е. =), вместо уравнения переноса излучения (1.24) и уравнения лучистого равновесия (1.17) получаем

cos

dI

dr

=-

I

+

,

(2.1)

4

0

d

=

d

0

I

d

.

(2.2)

Введём обозначения

0

I

d

=

I

,

0

d

=

.

(2.3)

Величину I можно назвать полной интенсивностью излучения, а величину — полным коэффициентом излучения.

Проинтегрировав уравнение (2.1) по всем частотам, находим

cos

dI

dr

=-

I

+

,

(2.4)

а уравнение (2.2) переписывается в виде

4

=

I

d

.

(2.5)

При исследовании переноса излучения в любой среде целесообразно переходить от геометрических расстояний к оптическим расстояниям. В данном случае удобно ввести оптическую глубину , определяемую формулой

=

r

dr

(2.6)

Положим также

=

S

.

(2.7)

Тогда уравнения (2.4) и (2.5) принимают вид

cos

dI

d

=

I-S

,

S

=

I

d

4

.

(2.8)

Таким образом, мы получили два уравнения для определения двух неизвестных функций I и S.

В системе уравнений (2.8) величина I является функцией от и , а величина S — функцией от . Учитывая, что d=sin d d, и производя интегрирование по в пределах от 0 до 2, вместо (2.8) получаем

Поделиться:
Популярные книги

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

(не)Бальмануг. Дочь 2

Лашина Полина
8. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(не)Бальмануг. Дочь 2

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Пушкарь. Пенталогия

Корчевский Юрий Григорьевич
Фантастика:
альтернативная история
8.11
рейтинг книги
Пушкарь. Пенталогия

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Большая Гонка

Кораблев Родион
16. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Большая Гонка

Дайте поспать! Том II

Матисов Павел
2. Вечный Сон
Фантастика:
фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать! Том II

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену