Чтение онлайн

на главную

Жанры

Квантовая механика и интегралы по траекториям
Шрифт:

Допустим, что сигналы очень слабые, а их среднее число за единицу времени велико. В этом случае g(t) мало и, разлагая экспоненту exp[ik(t+s)g(t)dt] в степенной ряд, можно аппроксимировать характеристическую функцию выражением

exp

i

T

0

T

0

k(t+s)g(t)dt

ds

=

exp

iG

2T

0

k(t)dt

,

(12.20)

где

через G=g(t)dt обозначена площадь сигнала. Это означает, что характеристическая функция выражается в виде (12.15) с F(t)=G (постоянной, не зависящей от t), а это эквивалентно достоверному утверждению, что f(t) совпадает с или, другими словами, вероятность равна единице при наблюдении функции f(t)=G и равна нулю при наблюдении других функций f(t). Таким образом, совокупность большого числа малых слабых сигналов порождает почти постоянный потенциал, величина которого равна произведению числа сигналов за 1 сек на среднее значение потенциала сигнала.

Перейдём теперь к приближению более высокого порядка и изучим флуктуации около этого постоянного потенциала.

Равенство (12.20) даёт первое приближение экспоненты exp[ik(t+s)g(t)dt] в выражении для характеристического функционала (12.19). Допустим теперь, что мы переходим к следующему приближению и учитываем члены второго порядка в виде

2

k(t)g(t-s)dt

k(t')g(t'-s)dt'

ds

.

(12.21)

Чтобы получить более простое выражение, введём функцию, определяющую степень перекрытия двух соседних сигналов,

=

g(t)

g(t+)

dt

.

(12.22)

Эта подстановка приводит член второго порядка к виду

2

T

0

T

0

k(t)

k(t')

(t-t')

dt

dt'

.

(12.23)

Характеристический функционал с учётом членов первого и второго порядков приобретает вид

= exp

iG

k(t)

dt

exp

2

k(t)

k(t')

(t-t')

dt

dt'

.

(12.24)

Первый множитель в этом выражении соответствует постоянному среднему уровню шума, который, если иметь в виду импульсы напряжения, можно назвать уровнем постоянного тока. Мы можем при желании пренебречь этим уровнем и интересоваться только изменениями потенциала, сдвинув начало отсчёта f(t). Это означает, что путём изменения начала отсчёта функции f(t) всегда можно освободиться от множителя exp[ik(t)F(t)dt] [т.е. записать f(t)=F(t)+f'(t), изучить распределение вероятности и характеристический функционал для f(t)]. Если мы сделаем такое изменение начала отсчёта, то будем изучать лишь флуктации напряжения относительно уровня постоянного тока.

Отметим одно приближение к функционалу (12.24), которое часто оказывается точным. В общем случае — узкая, пикообразная функция от . Нарастание и спад формы сигнала g(t) характеризуется конечной шириной, так что если два сигнала разделены достаточно большим промежутком времени, то у них нет области перекрытия. Другими словами, быстро стремится к нулю при увеличении . Поэтому, если имеет достаточно узкий профиль, второй член в уравнении (12.24) может быть аппроксимирован выражением

e

– (q/2)[k(t)]^2dt

,

(12.25)

где обозначено

q

=

d

.

Это эквивалентно распределению вероятности

P[f(t)]

=

e

– (q/2)[f(t)]^2dt

.

(12.26)

Флуктуации, подобные тем, что мы сейчас рассматриваем, часто называют гауссовым шумом.

Характеристики функционалов вероятности, описывающих шумовые функции, последнее время широко обсуждались в теории связи, причём многие характеристики шумового спектра были определены и вычислены. Аналогичное рассмотрение проведём здесь и в следующем параграфе, где рассматриваются гауссовы шумы.

Покажем ещё на одном примере, как выводятся характеристические функционалы. Рассмотрим сигналы, которые приходят в случайные моменты времени и для которых задана характеристическая форма, например, в виде u(t), но различен масштабный весовой множитель, так что типичный сигнал запишется как au(t). Можно также допустить, что вес a может быть либо положительным, либо отрицательным. Пусть сигналы приходят в какие-то моменты времени tj, а их веса принимают случайные положительные и отрицательные значения aj. Тогда результирующая функция представляется выражением

f(t)

=

 

j

a

j

u(t-t

j

)

.

(12.27)

Если отвлечься от случайной природы событий, то мы получим характеристический функционал, эквивалентный функционалу (12.16);

=

exp

i

 

j

a

j

k(t)

u(t-t

j

)

dt

.

(12.28)

Если учесть теперь случайную природу весовых масштабных множителей сигналов и обозначить вероятность обнаружения весового множителя, соответствующего j-му сигналу, в интервале daj через p(aj)daj, то характеристический функционал будет иметь вид

=

i

 

j

a

j

k(t)

u(t-t

j

Поделиться:
Популярные книги

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Кровь на клинке

Трофимов Ерофей
3. Шатун
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.40
рейтинг книги
Кровь на клинке

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3