Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.
Шрифт:
Гейзенберг, освободившийся от неуверенности в себе, характеризовавшей его в молодые годы, сказал, что квантовая физика слишком осложнена моделями, которые не имеют под собой никакого основания и уже не справляются с предсказанием эмпирических результатов. Вместо того чтобы брать за отправную точку модели, нам незнакомые, лучше взять действительно известные данные: число и интенсивность спектральных линий, рассеяние излучений и света или любое другое явление, связанное с электронами и излучениями. И Гейзенберг, будто нумеролог или каббалист, принялся организовывать данные энергии и интенсивности по рядам и столбцам. Так он заметил, что складываются любопытные повторяющиеся математические отношения, которые позволяют ему с относительной легкостью оперировать эмпирическими
Историки науки много раз задавались вопросом, как возможно, чтобы поколение молодых ученых, происходивших в основном из Германии и Австрии, сумело изменить облик физики за такой короткий срок. Необходимость объяснить абсолютно новые явления, возникшая после открытия рентгеновских лучей, радиоактивности и электрона,— недостаточный аргумент. В странах, проигравших Первую мировую войну, было очень неспокойно. Гиперинфляция в Германии и, в меньшей степени, в Австрии, наряду с постоянными революционными движениями со всех сторон политического спектра, определили атмосферу неуверенности, где понятие «вероятности» накладывалось на понятие «причинной обусловленности». Молодые ученые видели необходимость разрыва со старой традицией, которая привела их страны к катастрофе. Есть и еще один аспект. В обстановке кризиса и неуверенности, если кто-то хотел получить должность в университете, нужно было уметь привлечь к себе внимание. Так социально-экономическая обстановка определила рискованный ход мысли для молодежи, озабоченной своим профессиональным будущим. Естественно, мы говорим только о тех революционных идеях, которые работали, иначе можно было бы вспомнить множество теорий, отошедших в мир иной; имена их создателей так и не попали в историю науки. Несомненно одно: в более стабильной, более традиционной ситуации идеи таких людей, как Гейзенберг и Паули, принять было бы сложнее.
Вернер Гейзенберг.
Первым, с кем он обменялся идеями, был Паули, и только на исходе лета взволнованный Бор увидел, что спустя десять лет его радикальная идея уже устарела, а молодые ученые вроде Гейзенберга и Паули меняют облик физики. По достоинству оценил проделанную Гейзенбергом работу его старый учитель и коллега по Геттингену Макс Борн, в большей степени математик, чем физик. Он увидел, что числовые отношения, найденные Гейзенбергом, совпадают с алгеброй Давида Гильберта (1862-1943), выведенной за несколько лет до этого также в Гёттингене. То есть идеальная конструкция (гильбертовы пространства), сформулированная для развития чистой математики, нашла практическое применение в объяснении физики самого малого и невообразимого.
Как толковал свою новую теорию сам Гейзенберг? Что означало забыть об орбитах и траекториях и сосредоточиться на наблюдаемых энергиях и амплитудах? Сотрудничество Бора и Гейзенберга достигло одной из кульминационных точек, которой стало появление так называемого «принципа неопределенности Гейзенберга». Он утверждает, что невозможно измерить одновременно и точно скорость и положение определенной частицы (то же самое справедливо для любой пары «сопряженных» величин, таких как энергия и время). Невозможность эта не просто техническая: она свойственна самому процессу измерения в атомном масштабе, поскольку само измерение предполагает значительное воздействие на измеряемое.
На макроскопическом уровне этого не происходит. Представим себе, как мы наблюдаем за тем, что находится внутри абсолютно темной комнаты. Мы можем взять фонарик, и если мы будем осторожными, наше наблюдение не окажет воздействия на содержимое комнаты. Но если мы захотим измерить содержимое атома, для его «освещения» будет использован поток света, энергия которого — того же порядка, что и у электронов внутри, поэтому мы получим информацию о результате взаимодействия света с электронами, а не о том, какими были электроны до облучения. Выходит, что на внутриатомном уровне измерение — это процесс, который изменяет саму систему и, следовательно, предоставляет информацию не о том, какой была эта система до наблюдения, а о том, какой она стала после.
Итак, принцип неопределенности — это отход от самого понятия траектории и местоположения. Другими словами, Гейзенберг, Бор и Паули считали, что физика должна сосредоточиться на начальных и конечных условиях изучаемых событий, а не на процессе, который они преодолевают, поскольку вмешаться в сам процесс означает изменить его. Это то же самое, что исследовать поведение воды в состоянии покоя в бассейне, погрузившись в нее. Изучаемое состояние будет полностью изменено, и любые полученные данные будут соответствовать не стоячей воде, а совокупности вода-пловец.
Наряду с головоломкой о внутренней структуре атома физика начала XX века столкнулась с другой загадкой — с природой таких излучений, как свет, рентгеновские лучи и радиоактивность. Что такое свет? Что это за «объект*'? Вопрос завораживал натурфилософов эпохи Возрождения и Барокко, включая Галилея, Декарта и Ньютона, но они не пришли к окончательному соглашению. Из-за авторитета Ньютона в XVIII веке многие точно следовали его идеям и считали очевидным, что свет состоит из потока световых частиц. Хотя также были свидетельства, позволявшие предположить, что свет ведет себя как волна. В XIX веке тенденция изменилась, и особенно после работ Максвелла, подтвержденных в 1888 году Генрихом Герцем (1857-1894), уже никто не сомневался, что свет — это волна и что Ньютон ошибался.
Однако этот консенсус длился недолго. Рентгеновские лучи и у-излучение имели некоторые общие свойства с электромагнитным светом, но в других аспектах вели себя как частицы. Также в одной из своих статей 1905 года Эйнштейн предположил, что свет подчиняется постулату Планка и, следовательно, должен пониматься как совокупность «квантов света», частиц, которые позже назвали «фотонами». Ученые вновь оказались на распутье.
Известны два знаменитых комментария, демонстрирующих замешательство в среде физиков накануне Первой мировой войны и в первые послевоенные годы. Так, на лекции 1921 года Уильям Генри Брэгг (1862-1942) сокрушался, что физики находятся в полнейшей темноте:
«Должно быть, есть какой-то факт, абсолютно неизвестный нам, который, когда он будет открыт, произведет революцию в нашем представлении о связи между волнами, эфиром и материей. На данный момент мы вынуждены оперировать обеими теориями. По понедельникам, средам и пятницам мы пользуемся волновой теорией, а по вторникам, четвергам и субботам интерпретируем свет как потоки частиц».
Джозеф Джон Томсон, в свою очередь, пошутил, что волновая и корпускулярная теории похожи на «битву между тигром и акулой. Каждый из этих зверей самый сильный в своих владениях, но бесполезен на территории другого».
Конфликт двух теорий был разрешен в результате его расширения. В 1924 году молодой французский аристократ Луи де Бройль (1892-1987) защитил докторскую диссертацию, в которой применил теорию относительности к движению электронов. Движению последних, а следовательно и каждой частице, назначалась волна, то есть был сделан вывод, что иногда они ведут себя как волна. Сам Эйнштейн пришел в восторг от этой диссертации.
Следуя концепции Луи де Бройля, молодой преподаватель Цюрихского университета Эрвин Шрёдингер (1887-1961) развил настоящую механическую теорию электронов с помощью математики, характерной для изучения волн. Так Шрёдингер смог предсказать возможные квантовые состояния электронов в атоме. Гейзенберг сделал то же самое, но различие заключалось в способе. Если назначить каждому электрону волновую функцию, то волны могут взаимодействовать — как, например, две морские волны. Самое удивительное было в том, как Шрёдингер вводил квантовые числа в каждую волну, то есть в поведение электронов, поскольку он делал это на основе узлов гармонического колебания волн.