Квантовая революция. Как самая совершенная научная теория управляет нашей жизнью
Шрифт:
По убеждению Шрёдингера, успех его волнового уравнения означал, что все квантовые явления можно в конечном счете объяснить поведением непрерывных волн. Но Бор и Гейзенберг на это возражали, что существуют явления, требующие привлечения идеи квантовых «скачков», – например, электроны в атоме Бора, переходящие с одной орбиты на другую. Гладким волновым преобразованием этого описать было нельзя. Шрёдингер не соглашался. «Если без этих чертовых квантовых скачков и правда никак не обойтись, то я уже жалею, что вообще связался с теорией квантов» [75] , –
75
Ibid., p. 75.
76
Ibid., p. 76.
Убедить другого в своей правоте никому из них так и не удалось, и Шрёдингер отправился восвояси. «На взаимное понимание нельзя было и надеяться – ведь в это время ни одна из сторон не могла предложить полной и непротиворечивой интерпретации квантовой механики», – вспоминал Гейзенберг. «И тем не менее к концу визита Шрёдингера мы в Копенгагене уверенно чувствовали, что находимся на верном пути» [77] . В принципиальном смысле проблема заключалась в том, что физический смысл волновой функции Шрёдингера был по-прежнему неясен. Но летом того же года Макс Борн частично разгадал эту головоломку: он показал, что волновая функция частицы в некоторой точке дает вероятность измерения частицы в этой точке [78] и что волновая функция коллапсирует, как только измерение произведено. Глубокое исследование Борна в конечном счете принесло ему Нобелевскую премию, и вполне заслуженно. Но выведенное Борном правило операций с волновыми функциями поставило перед физиками новые вопросы. Что такое измерение? Почему волновые функции ведут себя по-другому, когда их «измеряют» – что бы это выражение ни значило? Идея Борна и математический аппарат, разработанный Шрёдингером, стали золотым ключиком, открывшим квантовый мир, но цена этого открытия оказалась высокой: на сцене появилась проблема измерения.
77
Ibid.
78
См. главу 1.
Гейзенберга не очень беспокоило решение проблемы измерения. В большей степени его заботило, получит ли он еще одно предложение постоянной профессуры. Он был расстроен тем, что достижения Шрёдингера затмили его собственные и что он сделал ошибку, вернувшись в Копенгаген, вместо того чтобы обеспечить себе постоянное и надежное место
Гейзенберг задумался о том, что случилось бы, если попытаться измерить положение одиночной частицы, например электрона, с очень высокой точностью. Это было бы похоже на поиски бумажника, который мы обронили на темной лужайке: зажигаем фонарик и светим вокруг, пока не находим пропажу. С электроном фонарик не поможет – длина волны видимого света гораздо больше него. Можно поискать электрон при помощи более коротковолнового излучения – гамма-лучей. Посветив гамма-лучевым фонариком, мы легко отыщем наш электрон. Но гамма-лучи имеют высокую энергию. Как только гамма-фотон ударится в электрон, электрон тут же полетит в случайном направлении. Итак, мы знаем, где он только что был, но понятия не имеем, с какой скоростью и куда он после этого полетел.
Гейзенберг стал думать: является ли выбор между измерением положения объекта и его импульса неизбежным или это просто свойство придуманного им эксперимента? К своему восторгу, он убедился, что ограничения возможностей измерения имеют фундаментальный характер: глубоко зарывшись в математические дебри волновой механики Шрёдингера, Гейзенберг вычислил, сколько информации об импульсе объекта мы теряем, определяя его точное положение, и наоборот. Мы хорошо знаем либо где находится объект, либо с какой скоростью и куда он движется, но мы не можем знать и то и другое одновременно.
По предложению Бора, Гейзенберг назвал найденную им закономерность «принципом неопределенности». Опубликованная им статья об этом открытии сработала именно так, как он надеялся: университет в Лейпциге вновь предложил ему профессорскую кафедру. На этот раз Гейзенберг согласился и в июне 1927 года, в возрасте двадцати пяти лет, стал самым молодым штатным профессором в Германии.
Бор тем временем обнаружил, что принцип неопределенности Гейзенберга прекрасно сочетается с его собственной новой идеей об истинной природе квантового мира, идеей, суть которой он выражал словом «дополнительность». Он начал писать об этом статью, но она, как обычно у Бора, превратилась в кипу черновиков, в которых ни одно предложение не было доведено до конца. В сентябре, однако, Бор увидел, что времени на переписывание работы у него не осталось: на альпийском озере Комо, на севере Италии, должна была начаться международная физическая конференция, и ему, Бору, предстояло произнести речь на ее открытии. В день выступления, лихорадочно перебирая в памяти подготовленные тезисы, Бор поднялся на сцену и заговорил, как всегда, тихо и сбивчиво.
Конец ознакомительного фрагмента.