Квантовая революция. Как самая совершенная научная теория управляет нашей жизнью
Шрифт:
В июне 1925 года Гейзенберга свалил ужасающий приступ аллергии – сенной лихорадки. Непрерывно чихающий, почти ослепший, с распухшим лицом, залитым постоянно текущими слезами, несчастный молодой физик уехал в двухнедельный отпуск на Гельголанд, маленький пустынный островок в Северном море, полностью лишенный деревьев и цветов. За несколько дней, проведенных на острове, он немного оправился и вернулся к своим теоретическим исследованиям. Не думая больше о том, что модель Бора говорила об электронных орбитах в атоме, Гейзенберг сосредоточился на реальных результатах эксперимента: спектре света, излучаемого при скачках между энергетическими уровнями. В три часа утра, в одиноком домике на каменистом берегу, о который бились волны холодного моря, с трясущимися от холода и волнения руками, в возбуждении то и дело совершая «бесчисленные арифметические ошибки» [30] , Гейзенберг испытал озарение. «У меня было чувство, что сквозь внешнюю поверхность атомных явлений я разглядел странно прекрасный мир. Кружилась голова при мысли о том, что мне предстоит овладеть богатым многообразием математических структур, которое природа
30
Heisenberg 1971, p. 61.
31
Ibid.
Когда Гейзенберг вернулся к работе в Геттингенском университете, он из осторожности сначала отправил набросок новой теории своему другу, блестящему физику Вольфгангу Паули – «моему самому строгому критику» [32] , как вспоминал Гейзенберг много лет спустя. Но Паули восторженно приветствовал работу друга. «[Идеи Гейзенберга дают] новую надежду и возвращают мне радость жизни. <…> Хотя это еще не решение загадки, думаю, что теперь снова стало можно двигаться вперед» [33] , – писал Паули. Макс Борн, научный руководитель Гейзенберга, был с этим согласен. Борн и его студент Паскаль Йордан помогли Гейзенбергу прояснить структуру и значение новой теории, Борн прозвал ее «матричной механикой» – по названию необычных математических объектов, матриц, на которых она основывалась. Матричная механика Гейзенберга с технической стороны выглядела устрашающе, ее невозможно было свести к визуальным аналогиям, однако она открывала перспективы построения единой теории не только для атомных спектров, но и для всего мира квантов.
32
Ibid., p. 64.
33
Kumar 2008, p. 193.
Эйнштейн начал собственную революцию в физике за двадцать лет до описываемых событий. Ему было тогда столько же лет, сколько теперь было Гейзенбергу, – и он тоже находился в изоляции, хоть и не связанной с аллергией. В 1905 году, работая клерком в швейцарском патентном бюро, Эйнштейн опубликовал свою специальную теорию относительности, разрешив таким образом давний спор о природе света. До Эйнштейна считалось, что свет является волной, распространяющейся в некоторой пока не обнаруженной среде с характерным для XIX века названием «светоносный эфир». Но в 1887 году физики Альберт Майкельсон и Эдвард Морли потерпели неудачу при попытке зарегистрировать движение Земли сквозь эфир. Чтобы объяснить результат этого эксперимента, физики стали одну за другой выдвигать все более сложные и искусственные идеи. Один из них предположил, что эфир сжимает объекты, когда они движутся сквозь него. Другой показал, что этого недостаточно – эфир должен также замедлять все физические процессы в движущихся сквозь него телах! Попытки приписать эфиру столь странные свойства лишь для того, чтобы сохранить эту иллюзорную среду, становились все более искусственными и запутанными.
Эйнштейн разрубил этот узел одним великолепным ударом. Его идея была из тех, которые только по прошествии времени кажутся очевидными. Он предположил, что эфир так трудно описать и представить просто потому, что его вовсе не существует. Свет есть волна распространяющегося электромагнитного поля, которая движется всегда с одной и той же скоростью. Для движения этой волны никакая среда не нужна. Из такого простого предположения Эйнштейн вывел всю теорию движения – специальную теорию относительности. Она объяснила отрицательный результат опыта Майкельсона – Морли и позволила вывести из своих основных принципов казавшиеся странными эффекты – сокращение длины и замедление хода времени, которые другие теории принимали только как предположение.
Из специальной теории относительности вытекали необычные следствия. Одним из них было то, что скорость света оказывалась абсолютным пределом скорости: никакой объект или сигнал не мог двигаться быстрее, чем свет движется в вакууме. Из математики специальной теории относительности получалось, что для того, чтобы достичь скорости света, любому объекту требуется бесконечное количество энергии. А если объект каким-то образом сумеет двигаться быстрее света, то он теоретически отправится в прошлое и в принципе сможет не дать себе начать движение – парадоксальный результат. Скорость света и так довольно велика – около 300 000 км/c, но Эйнштейн к тому же показал, что никакое тело не может двигаться, никакой сигнал распространяться и никакое взаимодействие передаваться со скоростью, превышающей скорость света.
В том же году Эйнштейн напечатал продолжение своей работы: он развил теорию относительности, модифицировав ньютоновские законы движения. Попутно он вывел свое знаменитое уравнение, демонстрирующее, что масса есть форма энергии: E = mc2. И это были лишь две из статей, опубликованных Эйнштейном на протяжении 1905 года, «года чудес». Он напечатал еще две выдающиеся работы: о поведении атомов и о взаимодействии света и вещества – за вторую из них он впоследствии получил Нобелевскую премию.
В своих работах по теории относительности Эйнштейн отчасти следовал идеям австрийского физика и философа Эрнста Маха. Мах считал, что наука должна основываться на описательных законах, которые не содержат никаких утверждений об истинной природе мира, – такие утверждения он отвергал как бесполезные для науки и практики. Для Маха одним из наиболее злостных нарушителей этого принципа был величайший физик Исаак Ньютон. Основополагающий труд Ньютона, «Начала», открывался предположением, что пространство и время – абсолютные самостоятельные сущности, реально существующие в мире. Это «чудовищное понятие абсолютного пространства» было, по мнению Маха, «чистым мыслеобразом [34] , который нельзя уловить опытным путем». Мах полагал, что правильно построенная наука о механике будет обходиться без онтологических утверждений о том, какие именно вещи реально существуют, а вместо этого станет просто формулировать описательные математические законы, точно предсказывающие наблюдаемые движения всех тел. Хорошими теориями, по Маху, являются те, что устанавливают связи между наблюдениями, а не те, в которых постулируется существование принципиально ненаблюдаемых объектов.
34
Isaacson 2007, p. 84.
С точки зрения Маха, образцовой моделью современной физической теории была термодинамика. Ее законы выведены в начале 1800-х Карно, Джоулем и другими. Термодинамика ограничивалась количественным описанием тепловых процессов, наблюдаемых в паровых машинах в любой точке мира. Она позволяла предсказывать ход тепловых процессов, не постулируя никаких сторонних ненаблюдаемых идей о природе теплоты. Термодинамика не основывалась на каких-либо неясных, непроверяемых утверждениях о том, что существует или не существует в мире, – она просто описывала этот мир.
Эйнштейн прочел книгу Маха «История механики» еще студентом, и на него произвела глубокое впечатление критика ньютоновских идей абсолютного пространства и времени. «Эта книга повлияла на меня очень сильно» [35] , – писал он спустя несколько десятилетий. То, как в специальной теории относительности Эйнштейн решил проблему эфира, найдя его ненужной гипотезой, показывает, что идеи Маха об исключении сторонних ненаблюдаемых сущностей пришлись ему по сердцу. Более того, специальная теория относительности обрекла на забвение и ненавистные Маху абсолютные пространство и время.
35
Albert Einstein 1949a, «Autobiographical Notes», in Albert Einstein: Philosopher-Scientist, edited by Paul Arthur Schilpp (MJF Books, 1949), p. 21.
Короче говоря, Эйнштейн блестяще реализовал идеи Маха. Махисты много лет вдохновлялись его работами, считая, что успех теории относительности доказывает правильность их подхода. Для них было очевидно, что Эйнштейн разделяет взгляды Маха, ведь эти взгляды сыграли важную роль в появлении наиболее знаменитой и фундаментальной из его работ. Но когда последователям Маха случалось беседовать с Эйнштейном лично, они с удивлением убеждались, что он вовсе не был махистом-догматиком [36] – совсем наоборот! Хотя теория относительности и развенчала идею абсолютного пространства и времени, на место этих понятий она поставила другой абсолют: пространство-время, единую для всех наблюдателей комбинацию пространства и времени. Да и само слово «относительность», подразумевающее отказ от абсолютного, ввел в физику не Эйнштейн, а Макс Планк [37] – Эйнштейн недолюбливал этот термин именно потому, что в нем содержался намек на философский релятивизм. Эйнштейн предпочитал выражение «теория инвариантов» [38] , которое возбуждает совершенно другой ряд ассоциаций. (В теории относительности «инвариантами» называются величины вроде пространственно-временного интервала и многие другие, значения которых одинаковы для всех наблюдателей.) Позже, в зрелые годы, Эйнштейн неоднократно повторял, что идеи Маха не стоит принимать слишком всерьез. «Эпистемология Маха <…> представляется мне принципиально несостоятельной» [39] , – писал Эйнштейн. «Ничто живое из нее родиться не может. Она лишь способна вытравливать вредную нечисть» [40] . Мах считал, что физика – всего лишь средство организации восприятия мира, тогда как для Эйнштейна физика имела прямое отношение к миру как таковому. «Единственная цель науки, – говорил он, – установление того, что существует» [41] .
36
См. Don Howard 2015, «Einstein’s Philosophy of Science», в The Stanford Encyclopedia of Philosophy, Winter ed., edited by Edward N. Zalta,См. также в главе 8 еще о влиянии, которое Эйнштейн оказывал на последователей Маха, и об их реакции на открытие ими истинных философских воззрений Эйнштейна.
37
Gerald Holton 1998, Thematic Origins of Scientific Thought, rev. ed. (Harvard University Press), p. 70.
38
Ibid., p. 130.
39
Einstein 1949a, p. 21.
40
Isaacson 2007, p. 334.
41
Kumar 2008, p. 262. Курсив в оригинале.