Чтение онлайн

на главную

Жанры

Лекции по схемотехнике
Шрифт:

Сложные логические функции реализуются на основе простых логических элементов, путём их соответствующего соединения для реализации конкретной аналитической функции. Функциональная схема логического устройства, реализующего сложную функцию,

, приведённую в предыдущем параграфе, приведена на рисунке 2.

Рисунок 2 – Пример реализации сложной логической функции

Как

видно из рисунка 2, логическое уравнение показывает, из каких ЛЭ и какими соединениями можно создать заданное логическое устройство.

Поскольку логическое уравнение и функциональная схема имеют однозначное соответствие, то целесообразно упростить логическую функцию, используя законы алгебры логики и, следовательно, сократить количество или изменить номенклатуру ЛЭ при её реализации.

1.2.3 Законы и тождества алгебры логики 

Математический аппарат алгебры логики позволяет преобразовать логическое выражение, заменив его равносильным с целью упрощения, сокращения числа элементов или замены элементной базы.

Законы:

1 Переместительный: X Y = Y X; X Y = Y X.

2 Cочетательный: X Y Z = (X Y) Z = X (Y Z); X Y Z = (X Y) Z = X (Y Z).

3 Идемпотентности: X X = X; X X = X.

4 Распределительный: (X Y) Z = X Z Y Z.

5 Двойное отрицание:

.

6 Закон двойственности (Правило де Моргана):

Для преобразования структурных формул применяется ряд тождеств:

X X Y = X; X(X Y) = X — Правила поглощения.

X Y X

 = X, (X Y)(X
) = X – Правила склеивания.

Правила старшинства логических операций.

1 Отрицание — логическое действие первой ступени.

2 Конъюнкция — логическое действие второй ступени.

3 Дизъюнкция — логическое действие третьей ступени.

Если в логическом выражении встречаются действия различных ступеней, то сначала выполняются первой ступени, затем второй и только после этого третьей ступени. Всякое отклонение от этого порядка должно быть обозначено скобками. 

2 Основы синтеза цифровых устройств

2.1 Последовательность операций при синтезе цифровых устройств комбинационного типа

1 Составление таблицы истинности комбинационного цифрового устройства (КЦУ) согласно его определения, назначения, словесного описания принципа работы.

2 Составление логической формулы согласно таблицы истинности.

3 Анализ полученной формулы с целью построения различных вариантов и нахождения наилучшего из них по тем или иным критериям.

4 Составление функциональной схемы КЦУ из элементов И, ИЛИ, НЕ.

2.2 Аналитическая запись логической формулы КЦУ 

Запись в форме СДНФ (Совершенная дизъюнктивная нормальная форма).

В СДНФ логическая формула представляет собой логическую сумму нескольких логических произведений, в каждое из которых входят все независимые переменные с отрицанием или без него.

Формула получается в два этапа:

а) Записывается логическая сумма произведений, в каждое из которых входят все независимые переменные. Количество слагаемых равно числу наборов таблицы истинности, на которых логическая функция равна «1»;

б) ставится знак инверсии над теми независимыми переменными, которые равны «0» в рассматриваемом наборе.

Запись в форме СКНФ (Совершенная конъюнктивная нормальная форма).

В СКНФ формула представляет собой логическое произведение нескольких логических сумм, в каждую из которых все независимые переменные с отрицанием или без него.

Как и в предыдущем случае, формула получается в два этапа:

а) Записывается логическое произведение всех сомножителей; количество сомножителей равно числу наборов таблицы истинности, на которых логическая функция равна «0»;

б) ставится знак инверсии над теми независимыми переменными, которые равны «1» в рассматриваемом наборе.

Структурные формулы в виде СДНФ и СКНФ эквивалентны и, с помощью законов алгебры, логики могут быть преобразованы одна в другую.

Пример: Синтезировать мажоритарный логический элемент на три входа.

Мажоритарным называется логический элемент, выходное состояние которого совпадает с большинством входных сигналов.

На основании данного словесного описания мажоритарного элемента составлена его таблица истинности (Таблица 5).

Таблица 5 - Таблица истинности мажоритарного элемента

X1 X2 X3 Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 0 1
1 1 1 1

На основе таблицы истинности записывается СДНФ или СКНФ функции, а затем составляется функциональная схема элемента.

СДНФ:

СКНФ:

Рисунок 3 Функциональная схема мажоритарного элемента

Функциональная схема элемента, составленная на основе функции СДНФ мажоритарного элемента, приведена на рисунке 3. Схема состоит из 8 элементов, имеющих общее количество входов 19. Количество входов характеризует сложность схемы и называется «Число по Квайну». Схема составленная на основе функции СКНФ, также будет иметь 19 входов.

Поделиться:
Популярные книги

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя

Мимик нового Мира 14

Северный Лис
13. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 14

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Я еще граф

Дрейк Сириус
8. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще граф

(Не) Все могут короли

Распопов Дмитрий Викторович
3. Венецианский купец
Фантастика:
попаданцы
альтернативная история
6.79
рейтинг книги
(Не) Все могут короли

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Мимик нового Мира 13

Северный Лис
12. Мимик!
Фантастика:
боевая фантастика
юмористическая фантастика
рпг
5.00
рейтинг книги
Мимик нового Мира 13