Лекции по схемотехнике
Шрифт:
Сложные логические функции реализуются на основе простых логических элементов, путём их соответствующего соединения для реализации конкретной аналитической функции. Функциональная схема логического устройства, реализующего сложную функцию,
Рисунок 2 – Пример реализации сложной логической функции
Как
Поскольку логическое уравнение и функциональная схема имеют однозначное соответствие, то целесообразно упростить логическую функцию, используя законы алгебры логики и, следовательно, сократить количество или изменить номенклатуру ЛЭ при её реализации.
1.2.3 Законы и тождества алгебры логики
Математический аппарат алгебры логики позволяет преобразовать логическое выражение, заменив его равносильным с целью упрощения, сокращения числа элементов или замены элементной базы.
Законы:
1 Переместительный: X Y = Y X; X Y = Y X.
2 Cочетательный: X Y Z = (X Y) Z = X (Y Z); X Y Z = (X Y) Z = X (Y Z).
3 Идемпотентности: X X = X; X X = X.
4 Распределительный: (X Y) Z = X Z Y Z.
5 Двойное отрицание:
6 Закон двойственности (Правило де Моргана):
Для преобразования структурных формул применяется ряд тождеств:
X X Y = X; X(X Y) = X — Правила поглощения.
X Y X
1 Отрицание — логическое действие первой ступени.
2 Конъюнкция — логическое действие второй ступени.
3 Дизъюнкция — логическое действие третьей ступени.
Если в логическом выражении встречаются действия различных ступеней, то сначала выполняются первой ступени, затем второй и только после этого третьей ступени. Всякое отклонение от этого порядка должно быть обозначено скобками.
2 Основы синтеза цифровых устройств
2.1 Последовательность операций при синтезе цифровых устройств комбинационного типа
1 Составление таблицы истинности комбинационного цифрового устройства (КЦУ) согласно его определения, назначения, словесного описания принципа работы.
2 Составление логической формулы согласно таблицы истинности.
3 Анализ полученной формулы с целью построения различных вариантов и нахождения наилучшего из них по тем или иным критериям.
4 Составление функциональной схемы КЦУ из элементов И, ИЛИ, НЕ.
2.2 Аналитическая запись логической формулы КЦУ
Запись в форме СДНФ (Совершенная дизъюнктивная нормальная форма).
В СДНФ логическая формула представляет собой логическую сумму нескольких логических произведений, в каждое из которых входят все независимые переменные с отрицанием или без него.
Формула получается в два этапа:
а) Записывается логическая сумма произведений, в каждое из которых входят все независимые переменные. Количество слагаемых равно числу наборов таблицы истинности, на которых логическая функция равна «1»;
б) ставится знак инверсии над теми независимыми переменными, которые равны «0» в рассматриваемом наборе.
Запись в форме СКНФ (Совершенная конъюнктивная нормальная форма).
В СКНФ формула представляет собой логическое произведение нескольких логических сумм, в каждую из которых все независимые переменные с отрицанием или без него.
Как и в предыдущем случае, формула получается в два этапа:
а) Записывается логическое произведение всех сомножителей; количество сомножителей равно числу наборов таблицы истинности, на которых логическая функция равна «0»;
б) ставится знак инверсии над теми независимыми переменными, которые равны «1» в рассматриваемом наборе.
Структурные формулы в виде СДНФ и СКНФ эквивалентны и, с помощью законов алгебры, логики могут быть преобразованы одна в другую.
Пример: Синтезировать мажоритарный логический элемент на три входа.
Мажоритарным называется логический элемент, выходное состояние которого совпадает с большинством входных сигналов.
На основании данного словесного описания мажоритарного элемента составлена его таблица истинности (Таблица 5).
Таблица 5 - Таблица истинности мажоритарного элемента
X1 | X2 | X3 | Y |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
На основе таблицы истинности записывается СДНФ или СКНФ функции, а затем составляется функциональная схема элемента.
СДНФ:
СКНФ:
Рисунок 3 Функциональная схема мажоритарного элемента
Функциональная схема элемента, составленная на основе функции СДНФ мажоритарного элемента, приведена на рисунке 3. Схема состоит из 8 элементов, имеющих общее количество входов 19. Количество входов характеризует сложность схемы и называется «Число по Квайну». Схема составленная на основе функции СКНФ, также будет иметь 19 входов.