Лекции по схемотехнике
Шрифт:
2.3 Понятие базиса
Любая, сколь угодно сложная логическая функция, представленная таблицей истинности, может быть представлена в форме СДНФ или СКНФ. Каждая из этих формул записана с помощью логического сложения, умножения и отрицания. Поэтому для реализации логических устройств, предназначенных для обработки цифровых сигналов, в общем случае необходимо иметь элементы, выполняющие операции И, ИЛИ, НЕ. Такой набор элементов называется функционально полной системой логических элементов или логическим базисом. Это означает, что из комбинации логических элементов И, ИЛИ, НЕ, взятых в достаточном количестве, можно построить сколь угодно сложное цифровое устройство. Базис из элементов: И, ИЛИ, НЕ называется основным.
Однако, число необходимых элементов
Рисунок 4 Реализация элемента ИЛИ на элементах НЕ, И
Аналогично можно исключить элемент И, заменив его операцией логической суммы над инверсными значениями переменных с последующим применением операции инверсии
При схемной реализации функционально полных систем с минимальным логическим базисом идут по пути использования универсальных логических элементов: ИЛИ-НЕ, И-НЕ и И-ИЛИ-НЕ (Рисунок 5).
Рисунок 5 Универсальные логические элементы
Элемент ИЛИ-НЕ Рисунок 5,а) осуществляет логическую операцию
Элементы универсальных базисов позволяют реализовать все три основные логические операции (Рисунок 6). Например, для осуществления операции НЕ с помощью элемента И-НЕ достаточно объединить входы
Рисунок 6 Реализация функций НЕ, И и ИЛИ на элементах И-НЕ
При последовательном соединении элемента И-НЕ и инвертора осуществляется операция логического умножения:
Применение трёх элементов И-НЕ, два из которых работают в режиме инвертирования с объединёнными входами (рисунок 6,в), позволяют реализовать операцию логического сложения
В общем случае логическая функция Y может зависеть от нескольких переменных X1,X2,…,Xn. Говорят, что функция Y определена, если известны её значения для всех возможных наборов переменных. Функция Y не определена, когда некоторые сочетания переменных по условию задачи невозможны. В этом случае её можно доопределить, приписав ей значение «1» либо «0» по соображениям удобства реализации.
2.4 Минимизация логических формул
Однозначная зависимость сложности логической формулы и функциональной схемы логического устройства приводят к выводу необходимости минимизации структурной формулы логического устройства. Минимизация осуществляется с использованием основных соотношений, законов и теорем алгебры логики.
2.4.1 Расчётный метод минимизации
Применение этого метода состоит в последовательном применении к некоторой формуле законов и правил тождественных преобразований алгебры логики. При этом широко используют следующие приёмы: прибавление одного или нескольких членов, входящих в СДНФ, поскольку X X X = X; выделение членов, содержащих множитель
Пример: Минимизировать функцию СДНФ мажоритарного элемента (См. п.2.2) и реализовать его схему на элементах основного базиса.
Склеивая первые три минтерма с четвёртым, получаем ДНФ функции мажоритарного элемента, которая проще СДНФ:
Y = X1·X2 X1·X3 X2·X3
Минимизированная функциональная схема мажоритарного элемента приведена на рисунке 7.
Рисунок 7 Функциональная схема мажоритарного элемента, реализованная на основе минимизированной функции ДНФ
Из сравнения схем, приведённых на рисунках 3 и 7 следует, что в минимизированной схеме число по Квайну уменьшилось с 19 до 9.
Карты Карно — это графическое представление таблиц истинности логических функций. Они содержат по 2n ячеек, где n — число логических переменных. Например, карта Карно для функции трёх переменных содержит 2n=23=8 ячеек, для четырёх переменных — 24=16 ячеек.
Карта размечается системой координат, соответствующих значениям входных переменных. Обратим особое внимание на то, что координаты столбцов (а также и строк, если n>3), следуют не в естественном порядке возрастания двоичных кодов, а так: 00 01 11 10. Это делается для того, чтобы соседние наборы (в том числе и столбцов 1 и 4) отличались лишь одной цифрой в каком-либо разряде.
Процесс минимизации заключается в формировании правильных прямоугольников, содержащих по 2k ячеек, где k — целое число. В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям (т. е. отличаются только в одном разряде).