Чтение онлайн

на главную

Жанры

Шрифт:

Похожая конструкция флюоресцентной трубки показана на рисунке 27. Трубка Т изготовлена из двух коротких трубок разного диаметра, закупоренных на концах. Снизу размещено проводящее покрытие С, соединенное с проводом w. Провод на верхнем конце имеет крепежную петлю и проходит по центру тонкой трубки, заполненной плотно набитым изолятором. С внешней стороны трубки Т есть еще одно проводящее покрытие Cfна которое надет металлический отражатель Z, который должен быть отделен от провода w толстым слоем изоляции.

Экономичное использование отражателя или усилителя требует, чтобы вся энергия, подаваемая на воздушный конденсатор, была возместима, иными словами не должно быть потерь ни в газообразной среде, ни благодаря ее действию где бы то ни было. Это далеко не так, но, к счастью, потери можно свести к любому желаемому значению.

По этому поводу следует сделать несколько пояснений, чтобы расставить все точки над i в опытах, предпринятых для исследования этого направления.

< image l:href="#"/>

Допустим, что небольшая спираль, как в опыте на рисунке 17, одним концом соединена с одним из выводов катушки индуктивности, а вторым — с металлической пластиной или, для простоты, с шаром, изолированным в пространстве. Когда катушка начинает работать, потенциал шара меняется и небольшая спираль ведет себя так, как будто ее свободный конец соединен с другим выводом катушки. Если внутрь спирали поместить железный провод, он сразу раскалится, а это значит, что через спираль проходит сильный ток. Как ведет себя в данном случае металлический изолированный шар? Он может быть конденсатором, накапливающим и отдающим энергию, а может быть просто стоком энергии, и условия опыта определяют, чем он больше является в настоящее время. Когда шар находится под высоким напряжением, он индуктивно действует на окружающий его воздух или иной газ. Молекулы или атомы, находящиеся вблизи шара, естественно, притягиваются сильнее, и проходят большее расстояние, чем те, что дальше от него. Когда ближайшие молекулы ударяются о шар, они отталкиваются, и по всей зоне действия индукции происходят столкновения. Теперь ясно, что если потенциал постоянен, то таким образом потери энергии будут очень малы, ибо молекулы, находящиеся ближе всего к шару, получив от удара дополнительный заряд, не притягиваются до тех пор, пока не избавятся если не от всего, то хотя бы от большей части дополнительного заряда, что достигается многими столкновениями. На основании того факта, что в сухом воздухе очень мало потерь энергии, можно прийти к такому выводу. Когда потенциал шара не постоянный, а переменный, условия в корне меняются. В таком случае происходит ритмическая бомбардировка, независимо от того, теряют ли молекулы заряд после удара или нет; более того, если заряд теряется, столкновения становятся более сильными. Всё же, если частота импульсов невелика, потери, вызванные ударами и столкновениями, будут большими, если только потенциал не крайне высок. Но при высоких частотах и более или менее высоких потенциалах потери могут быть огромными. Количество энергии, утраченное за единицу времени, пропорционально произведению количества столкновений в секунду, или частоты, и количеству энергии, потраченной при каждом столкновении. Но энергия столкновения должна быть пропорциональна квадрату электрической плотности шара, так как заряд, переданный молекулам, пропорционален этой плотности. Из этого следует вывод, что общее количество потерянной энергии пропорционально произведению частоты и квадрата электрической плотности; но этот закон требует экспериментального подтверждения. Если предположить, что приведенные высказывания верны, то, часто меняя потенциал тела, помещенного в изолирующую газообразную среду, можно рассеять любое количество энергии. Большее количество энергии тогда, полагаю я, не рассеивается в форме длинных эфирных волн, перемещающихся на большие расстояния, как многие полагают, но потребляется, как, например, в случае с изолированным шаром — в процессе потерь в результате ударов и столкновений и вблизи шара. Для уменьшения рассеивания необходимо добиться небольшой электрической плотности — тем меньшей, чем выше частота.

Но поскольку на основании ранее выдвинутого предположения потери уменьшаются пропорционально квадрату плотности, и так как токи высокой частоты при передаче по проводам вызывают большие потери, следует, что в целом лучше пользоваться одним проводом, а не двумя. Следовательно, если моторы, лампы или иные приборы усовершенствуются и их можно будет эксплуатировать при помощи токов высокой частоты, экономические причины будут диктовать нам использование только одного провода, особенно если расстояния огромны.

Когда энергия адсорбируется конденсатором, он ведет себя так, как будто его емкость увеличилась. Это явление всегда имеет место, в большей или меньшей степени, но оно невелико и не имеет последствий, если частота невысока. При использовании крайне высокой частоты, и обязательно в данном случае высокого потенциала, адсорбция — или то, что в нашем случае, в частности, называется потерей энергии вследствие присутствия газообразной среды, — это важный фактор, который надо учитывать, так как энергия, потерянная в воздухе, может составлять любую часть затраченной энергии. Может показаться, что по измеренной или вычисленной емкости конденсатора очень трудно определить его действительную емкость или период колебаний, особенно если конденсатор имеет маленькую поверхность и высокий потенциал. Так как многие важные результаты зависят от точности предположения, этот предмет требует тщательного исследования другими экспериментаторами. Для уменьшения шансов на ошибку в указанных опытах я бы

посоветовал использовать шары или пластины большой площади, дабы уменьшить электрическую плотность. В противном случае, если это возможно практически, следует пользоваться масляным конденсатором. По видимому, в масле или других жидких диэлектриках, таких потерь, как в газообразной среде, не происходит. Если есть возможность полностью выгнать газ из конденсаторов с твердым диэлектриком, то их следует помещать в масло только лишь по соображениям экономии; тогда они могут получать наивысший потенциал и оставаться холодными. В лейденских банках потери в воздух практически малы, так как покрытия из фольги большие, расположены близко друг к другу и заряженные поверхности не открыты напрямую; но когда потенциалы высоки, потери могут быть значительны на верхнем крае фольги или около него, там, где на воздух оказывается самое сильное воздействие. Если банку поместить в олифу, то она сможет выполнять работу, в четыре раза превышающую то же самое количество, выполненное за единицу времени при обычных условиях, и потери при этом будут ничтожны.

Не следует думать, что тепловые потери в воздушном конденсаторе обязательно связаны с образованием видимых потоков или кистей. Если небольшой электрод, помещенный в колбу с воздухом, соединить с выводом катушки, можно заметить потоки, исходящие от него, а воздух в колбе нагреется; если вместо электрода туда поместить большой шар, то потоков не будет, но воздух нагреется.

Также не следует думать, что температура воздушного конденсатора может дать представление о потерях при нагреве, так как в таком случае теплота должна выделяться гораздо быстрее: в дополнение к обычному излучению происходит очень интенсивный отток тепла с независимыми носителями, поскольку не только устройство, но и воздух на некотором расстоянии от него нагреваются из-за возможных столкновений.

Благодаря этому в экспериментах с катушкой повышение температуры можно отчетливо наблюдать только, когда предмет, соединенный с ней, достаточно мал. Но если аппарат больших размеров, даже большой предмет нагреется, например, человеческое тело; и я думаю, что опытным врачам полезно последить за такими опытами, которые при правильной конструкции устройств не представляют никакой угрозы для здоровья.

Здесь возникает интересный вопрос, в основном, для метеорологов. Как ведет себя Земля? Земля — это воздушный конденсатор, но он совершенен или нет, или является просто стоком энергии? Нет почти никаких сомнений, что во время таких возбуждений, которые происходят во время опытов, Земля — совершенный конденсатор. Но всё может быть иначе, когда ее заряд начинает колебаться под влиянием каких-то небесных воздействий. В таком случае, как указывалось ранее, видимо, только небольшое количество энергии будет передано в космос в форме длинных эфирных волн, но наибольшее количество энергии, я думаю, истратится при молекулярных и атомных столкновениях, и уйдет в космос в форме коротких тепловых и, возможно, световых волн. Так как частота колебаний заряда и потенциал, по всей вероятности, крайне велики, преобразованная в теплоту энергия может быть значительна. Поскольку электрическая плотность распределяется неравномерно, как по причине неровностей земного рельефа, так и из-за различных атмосферных явлений, полученный эффект будет разным в разных местах. Значительные изменения в температуре и атмосферном давлении вследствие этого могут происходить в разных местах планеты. Изменения могут быть постепенными или внезапными, соответственно природе возбуждения, и могут вызывать ливни и грозы, или локально изменять погоду так или иначе.

Из приведенных замечаний можно сделать вывод о том, каким важным фактором становятся потери в воздухе, окружающем заряженные поверхности, когда электрическая плотность велика, а частота импульсов чрезмерна.

Но в соответствии с нашими объяснениями выходит, что воздух — изолятор, то есть он состоит из независимых носителей зарядов, погруженных в изолирующую среду. Так получается, когда воздух находится под обычным или немного выше, или очень малым давлением. Когда же воздух немного разрежен и проводит ток, тогда настоящие потери проводника также имеют место. В таком случае, конечно, значительное количество энергии может быть рассеяно в воздухе даже при постоянном потенциале, или импульсах низкой частоты, если плотность очень большая.

Когда газ находится под очень небольшим давлением, электрод нагревается сильнее, так как достигаются более высокие скорости. Если газ вокруг электрода сильно сжат, то смещения, а соответственно и скорости, очень малы, и нагрев незначителен. Но если в таком случае повысить частоту, то электрод нагреется до высокой температуры, точно так же, как он бы нагрелся, если бы газ находился под низким давлением; на самом деле откачка воздуха необходима, потому что мы не можем получить (и возможно передать) токи требуемой частоты.

Возвращаясь к теме электродной лампы, хорошо было бы как можно больше сконцентрировать тепло возле электрода путем предотвращения циркуляции воздуха в колбе. Если взять очень маленькую колбу, то в ней тепло будет концентрироваться лучше, чем в большой, но ее емкость может не позволить ей работать от катушки, но если это произойдет, стекло будет сильно греться. Проще всего усовершенствовать конструкцию, взяв лампу нужного размера и поместив внутрь нее небольшую колбу, диаметр которой точно выверен, расположив ее над тугоплавкой головкой накаливания. Эта конструкция показана на рисунке 28.

Поделиться:
Популярные книги

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Мама для дракончика или Жена к вылуплению

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Мама для дракончика или Жена к вылуплению

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3