Лекции
Шрифт:
Устройство показано на рисунке 30. 5 — это насос Шпренгеля, который был изготовлен специально для этой работы. Запорный кран не использовался, а вместо него в горловину резервуара R был вмонтирован полый клапан 5. Этот клапан имеет небольшое отверстие h, через которое поступает ртуть; размер выxoднoгo отверстия о тщательно выверен и подогнан под сечение трубки r, которая припаяна к резервуару, а не соединена с ним обычным способом. В этом устройстве удалось избежать проблем и недостатков, которые часто возникают вследствие использования запорного крана на резервуаре и соединения последнего с вертикальной трубкой.
Помпа соединяется U-образной трубкой Т с большим резервуаром Rf. С особой тщательностью были пригнаны поверхности кранов р и рробе они, а также ртутные чашки над ними сделаны особенно "длинными. После того, как U-образная трубка была пригнана и установлена на
Резервуар R1посредством резинового шланга соединяется с резервуаром R2который немного больше, и оба они снабжены запорными кранами C1 и С2, соответственно. Резервуар R2, может при помощи штатива опускаться и подниматься таким образом, что, когда он заполнен ртутью и клапан С2закрыт, так чтобы в поднятом положении в нем создавался вакуум Торричелли, его можно поднять так высоко, чтобы ртуть в резервуаре R1поднялась выше запорного крана C1 а когда этот кран закрыт, а резервуар R2 внизу и вакуум Торричелли образуется в резервуаре R1его можно было опустить так низко, чтобы ртуть полностью перетекла из резервуара R1в резервуар R2и встала чуть выше запорного крана С2
Емкость помпы и сочленений меньше соответственно вместимости резервуара R1, так как степень вакуума зависит от соотношения этих величин.
При помощи этого устройства я собрал воедино все средства производства высокого вакуума, применявшиеся в предыдущих опытах, в частности едкое кали. Позволю себе сказать касательно его использования: можно сэкономить значительное количество времени и усовершенствовать работу помпы, расплавив и доведя до кипения это вещество, как только, или даже раньше, чем помпа установится. Если этого не сделать, то едкое кали, как обычно при низких оборотах, может выделить влагу и помпа будет много часов работать, не давая высокого вакуума. Едкое кали я нагревал спиртовкой, попускал через него разряд или пропускал ток через провод, находящийся в нем. Преимущество последнего способа в том, что таким образом нагрев можно быстро повторить.
В целом процесс откачки воздуха выглядел так: вначале, когда запорные краны С и C1 открыты, а все остальные сочленения закрыты, резервуар R2 был поднят так высоко, что ртуть заполнила резервуар R1и узкую часть U-образной трубки. Когда помпа начинала работать, ртуть, конечно, быстро поднималась в трубке, а резервуар R2, опускался, причем исследователь удерживал ртуть примерно на том же уровне. Резервуар R2 уравновешивался длинной пружиной, которая облегчала эту работу, а трения частей было до-статочно, чтобы удерживать его в любом положении. Когда насос Шпренгеля заканчивал свою работу, резервуар R2 опускался еще ниже и уровень ртути в R1 опускался и она заполняла R2, после чего клапан С2 закрывался. Воз-дух, прижатый к стенкам R1, и воздух, поглощенный ртутью, выпускался, и чтобы освободить ртуть от всего воздуха, резервуар R2 много раз опускался и поднимался. Во время этого процесса некоторое количество воздуха, которое собиралось под запорным краном С2, выгонялось из R2 путем опускания его достаточно низко и открывания крана; кран закрывался перед тем, как поднять сосуд. Когда весь воздух был удален из ртути и больше не скапливался в R2, его опускали и прибегали к помощи едкого кали. Теперь резервуар R2 был снова поднят, пока ртуть в R1не устанавливалась выше крана С1 Поташ плавили и кипятили, и влага частично устранялась насосом, а частично реадсорбировалась; и этот процесс нагрева и охлаждения повторялся много раз, и каждый раз после того, как влага впитывалась или выгонялась, резервуар R2 много раз поднимали и опускали. Таким образом из ртути удалялась вся влага и оба резервуара были готовы к работе. Тогда резервуар R2 поднимался в верхнее положение и помпу включали на длительный срок. Когда достигалась наивысшая степень вакуума, колба с поташ ем оборачивалась хлопковой тканью, пропитанной эфиром, для того, чтобы держать ее при низкой температуре, затем резервуар R2 опускали и, после того как резервуар R1 опустел, приемник г быстро закупоривали.
Когда вставляли новую колбу, ртуть поднималась выше крана C1, который был закрыт для того, чтобы оба резервуара и ртуть находились в наилучшем состоянии, и ртуть никогда не удалялась из Rf, за исключением тех случаев, когда достигалась наивысшая степень откачки. Необходимо соблюдать это правило, чтобы устройство хорошо работало.
Применяя такую конструкцию, я работал очень быстро, а когда устройство было в абсолютном порядке, можно было
Исследователя в процессе опытов более всего впечатляет поведение газов, подвергнутых воздействию высокочастотного электростатического напряжения. Но его не должно покидать сомнение: можно ли наблюдаемые эффекты отнести именно на счет молекул или атомов газа, чей химический анализ происходит перед ним, или в игру вступает другое газообразное вещество, имеющее в своем составе атомы или молекулы, погруженные в жидкость, заполняющую пространство. Такая среда обязательно должна существовать, и я убежден, что, например, даже при отсутствии воздуха поверхность и пространство вокруг предмета нагревались бы от быстро колеблющегося потенциала тела; но такого нагрева поверхности и окружающего пространства не может произойти при удалении всех свободных атомов, если бы осталась однородная, несжимаемая и эластичная жидкость — какой должен быть эфир, — ибо тогда не было бы ни ударов, ни столкновений. В таком случае, что касается самого тела, могут происходить только внутренние потери от трения.
Поразительным является то, что разряд сквозь газ проходит тем легче, чем больше частота импульсов. В этом случае его поведение диаметрально противоположное металлическому проводнику. В последнем случае с повышением частоты роль импеданса возрастает, но газ ведет себя скорее как цепь конденсаторов: возможность прохождения заряда через него, видимо, зависит от скорости изменения потенциала. Если это так, тогда в вакуумной трубке любой длины, неважно какова сила тока, самоиндукция будет ничтожно мала. Тогда мы имеем проводник в виде газа, способный передавать электрические импульсы любой частоты которую мы сможем получить. Если бы частоту удалось поднять до достаточно высокого уровня, тогда можно было бы реализовать любопытную систему распределения электроэнергии, которая заинтересовала бы газовые компании: металлические трубы, заполненные газом, где металл — это изолятор, а газ — проводник. Конечно, можно изготовить полый медный стержень, разрядить в нем газ, и пропуская импульсы достаточно высокой частоты через контур вокруг него, довести газ внутри до высокой степени накала; но что касается сил, то весьма сомнительно, будет ли при таких импульсах медный стержень действовать как статический экран. С такими парадоксами и очевидно невозможными ситуациями мы сталкиваемся на каждом шагу в нашей работе, и именно в них в большой степени и заключается основная привлекательность исследований.
Здесь у меня короткая широкая трубка, из которой откачан воздух, покрытая толстым слоем бронзы, не дающей свету поступать внутрь. Металлический зажим для подвешивания трубки укреплен посередине и касается трубки. Теперь я хочу зажечь газ внутри, подвесив трубку на проводе, соединенном с катушкой. Любой, кто проводит этот опыт впервые, скорее всего пожелает остаться в одиночестве, дабы не стать посмешищем для ассистентов. И всё же трубка освещается, несмотря на металлическое покрытие, и свет ясно виден сквозь него. Длинная трубка, покрытая алюминиевой бронзой, довольно ярко загорается, если ее держать в одной руке, а другой касаться вывода катушки. Мне могут возразить, что покрытия недостаточно хорошие проводники; однако, даже если они имели бы большое сопротивление, они должны экранировать газ. Конечно, они экранируют газ, находясь в состоянии покоя, но не так хорошо, когда на них волнообразно воздействуют. Потери энергии в трубке, несмотря на экран, происходят благодаря газу. Если бы мы взяли полый металлический шар и заполнили его абсолютно несжимаемым жидким диэлектриком, внутри шара не было бы потерь, и, соответственно, можно было бы сказать, что содержимое прекрасно экранировано, хотя потенциал и быстро меняется. Даже если шар заполнить маслом, потери всё равно были бы меньше в сравнении с газом, так как в последнем случае сила порождает смещения, а это означает удары и столкновения.
Неважно, под каким давлением находится газ, он становится важным фактором нагрева проводника, когда электрическая плотность велика, а частота высокая. То, что для нагрева проводника путем светящегося разряда воздух является очень важным элементом, так же точно, как экспериментально доказанный факт. Можно проиллюстрировать действие воздуха при помощи следующего опыта: я беру короткую трубку с небольшим вакуумом внутри, по центру которой от одного конца до другого проходит платиновый провод. По нему пропускаю постоянный или низкочастотный ток и он равномерно нагревается по всей длине. Нагрев происходит вследствие проводимости, или фрикционных потерь, а газ вокруг провода, как видим, не выполняет никакой функции. Но теперь позвольте мне пропустить прерывистые разряды или высокочастотный ток. И снова провод нагревается, но только в этот раз в основном на концах и меньше всего в середине; и если частота импульсов, или скорость изменения, достаточно высока, то провод можно даже перерезать посередине, так как весь нагрев происходит благодаря разреженному газу. Здесь газ может выступать только как проводник, не имеющий сопротивления, отводящий ток от провода, поскольку сопротивление последнего сильно возрастает, при этом лишь нагревая концы провода, так как они сопротивляются прохождению разряда. Но совсем необязательно, чтобы газ в трубке был проводником; давление его может быть крайне низким, и всё же концы провода нагреются, как доказано опытом, только в данном случае эти два конца не будут иметь электрического контакта через газообразную среду. Итак, то что происходит при высоких частотах и потенциалах в вакуумной трубке, происходит и при разряде молнии при обычном давлении. Нам необходимо лишь помнить об одном из фактов, которые мы обнаружили во время этих исследований, а именно: в ответ на высокочастотные импульсы газ при обычном давлении ведет себя так, как будто он разрежен. Я думаю, что во время разрядов молнии часто провода или предметы-проводники испаряются только из-за того, что присутствует воздух, и что если бы проводник был погружен в изолирующую жидкость, он был бы в безопасности, так как тогда энергия была бы потрачена где-то в другом месте. Исходя из поведения газов в ответ на внезапные импульсы высокого потенциала я склонен сделать вывод, что не может быть более верного пути отвода разряда молнии, чем дать ему пройти через некий объем газа, если только это можно практически осуществить.