Чтение онлайн

на главную - закладки

Жанры

Лестница Шильда
Шрифт:

{13} E. Jonckheere, F. Langbein, S. Schirmer (2012). «Curvature of spin networks». <arXiv: 1202.2556vl>

ПРИЛОЖЕНИЯ [124]

Внешний вид Барьера

Барьер нововакуума представляет собой поверхность сферы, расширяющейся на скорости 0,5с. Его внешний вид в небе той или иной планеты определяется тем фактом, что, глядя вдаль от ближайшей точки Барьера, наблюдатель заглядывает в прошлое и видит Барьер в момент времени, когда его размеры были меньше.

124

Сноски

и комментарии в квадратных скобках добавлены переводчиком.

На рис. I черные круги указывают фактические размеры Барьера в пять различных моментов времени, а синие кривые — кажущиеся размеры и форму в восприятии неподвижного наблюдателя (также отмечен на рисунке), ожидающего прибытия света от Барьера. Математическое выражение для формы этих кривых легко получить, заметив, что время t, прошедшее с момента зарождения нововакуума, равно 2t1+ t2, где t1 — расстояние от центра Барьера до точки на кривой, a t2 — расстояние от этой точки до наблюдателя.

Серые пунктирные линии очерчивают кажущийся край Барьера и представляют собой касательные к синим кривым. Они показывают путь света, задевшего Барьер, когда его размеры значительно уступали нынешним. Поэтому Барьер затеняет меньший участок небосклона, чем в том случае, если бы его размеры все время оставались такими. И даже в последний показанный на рисунке момент времени, когда Барьер нависает непосредственно над нашим наблюдателем, сектор небесной сферы, отсеченный им, составит лишь 120 градусов.

На рис. II показано, как растет угловой видимый размер Барьера с течением времени. Переменный допплеровский сдвиг светового излучения Барьера изображен схематически по контуру поверхности. Точное значение фактора синего смещения варьирует от VЗ = 1,732 в центре до 2/VЗ = 1,1547 по краю. Допплеровский сдвиг на краю поля зрения остается неизменным по мере расширения Барьера, поскольку наблюдаемый там свеn всегда излучается под углом 90 градусов к направлению распространения (в системе отсчета, движущейся вместе с соответствующим сегментом Барьера).

Спиновые сети: только бы соединить…

Понемногу складывается впечатление, что известный афоризм Э. М. Форстера [125] — излишество. Теория, для которой строительными блоками Вселенной выступают математические структуры — графы, — которые соединяются друг с другом, а больше-то ничего и не делают.

Граф можно представить в виде множества точек — узлов, и набора линий, соединяющих эти узлы — ребер. Детали построения, например, длина и форма ребер, вообще говоря, безразличны для структуры графа. Единственная черта, по которой можно отличить один граф от другого — тип связывания узлов. Число ребер, сходящихся в один и тот же узел, называется его валентностью.

125

Годвард Морган Форстер (1879–1970) — английский писатель и философ. «Только бы соединить…» — эпиграф к его роману «Говардс-Энд» (1910).

В квантовой теории графов, или КТГ, квантовое состояние, описывающее как геометрию пространства, так и поля материи, присутствующей в нем, построено из комбинаций

графов. Теория обрела нынешнюю форму в работах яванского математика Куснанто Сарумпета, который в серии из шести статей, опубликованных с 2035 по 2038 гг., показал, что как общая теория относительности (ОТО), так и Стандартная Модель физики элементарных частиц (СМ) представляют собой аппроксимации единой теории — КТГ.

У графов Сарумпета долгая и славная родословная, которую можно проследить вплоть до работ Майкла Фарадея о «силовых линиях», соединяющих электрические заряды, и теории Уильяма Томсона об атомах как заузленных «вихревых трубках». Ближайшими предшественниками теории Сарумпета явились модель спиновых сетей Роджера Пенроуза, в которой рассмотрены трехвалетные графы с приписанным каждому узлу полуцелым числом, соответствующим возможному значению спина квантовой частицы. Пенроуз изобрел спиновые сети в начале 1970-х и продемонстрировал, как полный набор пространственных направлений может быть получен из простых комбинаторных принципов, применяемых к процессам обмена спином между двумя областями обширной сети.

Обобщение спиновых сетей позднее нашло место в различных вариантах квантовой теории поля (КТП). Волновая функция приписывает каждому возможному расположению частицы амплитуду вероятности, а спиновая сеть, погруженная в пространственную область, аналогичным образом приписывает амплитуду всем возможным полевым конфигурациям. Квантовые состояния, определенные в этом формализме, состоят из линий потока, текущего вдоль ребер сети.

В 1990-е Ли Смолин и Карло Ровелли обнаружили, что в квантовой гравитации, где спиновосетевые состояния наделены простой геометрической интерпретацией, имеет место аналогичное явление: площадь поверхности зависит только от числа ребер сети, пересекающих ее. Эти ребра мыслятся квантованными «линиями потока площади»; в квантовой гравитации площадь и прочие геометрические параметры принимают значения из дискретного спектра вариантов. Впоследствии оказывается удобным проквантовать и саму топологию, причем узлы и ребра постепенно вытесняют обычное представление о пространстве как о континууме точек.

В первые десятилетия нового тысячелетия Джон Баэз, Фотини Маркопулу, Хосе-Антонио Сапата и их коллеги добились выдающихся результатов в исследовании законов динамики спиновых сетей. В их подходе процессам межсетевой эволюции (преобразования одной сети в другую) приписываются квантовые амплитуды. В 2030-е Сарумпет начал систематизацию этих работ и на их основе построил новую модель, в которой использовал графы произвольной валентности с неразмеченными узлами.

Геометрия трехмерного пространства возникает при рассмотрении четырехвалентных графов, где четыре ребра, исходящие из каждого узла, ограничивают площадь грани так называемого «квантового тетраэдра». Если рассматривать графы высших валентностей, можно столкнуться с нежелательными осложнениями: структуру взрывоподобно заполонят новые измерения. Но Сарумпет вывел простой динамический закон, ограничивающий среднюю валентность значением 4. В то же время трехвалентные и пятивалентные узлы (так называемые «допанты» [126] по аналогии с примесями в полупроводниках) разрешены правилами Сарумпета в том смысле, что они образуют специальные узоры: замкнутые, возможно, заузленные цепи с переменной валентностью. Эти петли узлов-допантов, классифицированные по симметриям и типам взаимодействий, находятся в отличном соответствии с частицами СМ.

126

В физической химии так называются примесные атомы, по достижении определенной концентрации меняющие свойства основного материала (обычно полупроводника или аморфного сплава).

Поскольку характерная площадь, отграниченная ребрами квантового графа, по порядку величины соответствует нескольким квадратным планковским длинам l2pl, то есть примерно в 1050 раз меньше площади поверхности атома водорода, одно время опасались, что КТГ останется недоступна экспериментальной проверке еще много веков. Но в 2043 г. компьютерное моделирование позволило выявить новый класс «полимерных состояний»: длинные разомкнутые цепи узлов-допантов, времена полураспада и характерные энергии которых находились уже в пределах досягаемости современной технологии.

Поделиться:
Популярные книги

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Низший

Михайлов Дем Алексеевич
1. Низший!
Фантастика:
боевая фантастика
7.90
рейтинг книги
Низший

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Возвращение Безумного Бога 5

Тесленок Кирилл Геннадьевич
5. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 5

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Теневой Перевал

Осадчук Алексей Витальевич
8. Последняя жизнь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Теневой Перевал

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

По дороге пряностей

Распопов Дмитрий Викторович
2. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
5.50
рейтинг книги
По дороге пряностей