Лестница Шильда
Шрифт:
{13} E. Jonckheere, F. Langbein, S. Schirmer (2012). «Curvature of spin networks». <arXiv: 1202.2556vl>
ПРИЛОЖЕНИЯ [124]
Барьер нововакуума представляет собой поверхность сферы, расширяющейся на скорости 0,5с. Его внешний вид в небе той или иной планеты определяется тем фактом, что, глядя вдаль от ближайшей точки Барьера, наблюдатель заглядывает в прошлое и видит Барьер в момент времени, когда его размеры были меньше.
124
Сноски
На рис. I черные круги указывают фактические размеры Барьера в пять различных моментов времени, а синие кривые — кажущиеся размеры и форму в восприятии неподвижного наблюдателя (также отмечен на рисунке), ожидающего прибытия света от Барьера. Математическое выражение для формы этих кривых легко получить, заметив, что время t, прошедшее с момента зарождения нововакуума, равно 2t1+ t2, где t1 — расстояние от центра Барьера до точки на кривой, a t2 — расстояние от этой точки до наблюдателя.
Серые пунктирные линии очерчивают кажущийся край Барьера и представляют собой касательные к синим кривым. Они показывают путь света, задевшего Барьер, когда его размеры значительно уступали нынешним. Поэтому Барьер затеняет меньший участок небосклона, чем в том случае, если бы его размеры все время оставались такими. И даже в последний показанный на рисунке момент времени, когда Барьер нависает непосредственно над нашим наблюдателем, сектор небесной сферы, отсеченный им, составит лишь 120 градусов.
На рис. II показано, как растет угловой видимый размер Барьера с течением времени. Переменный допплеровский сдвиг светового излучения Барьера изображен схематически по контуру поверхности. Точное значение фактора синего смещения варьирует от VЗ = 1,732 в центре до 2/VЗ = 1,1547 по краю. Допплеровский сдвиг на краю поля зрения остается неизменным по мере расширения Барьера, поскольку наблюдаемый там свеn всегда излучается под углом 90 градусов к направлению распространения (в системе отсчета, движущейся вместе с соответствующим сегментом Барьера).
Понемногу складывается впечатление, что известный афоризм Э. М. Форстера [125] — излишество. Теория, для которой строительными блоками Вселенной выступают математические структуры — графы, — которые соединяются друг с другом, а больше-то ничего и не делают.
Граф можно представить в виде множества точек — узлов, и набора линий, соединяющих эти узлы — ребер. Детали построения, например, длина и форма ребер, вообще говоря, безразличны для структуры графа. Единственная черта, по которой можно отличить один граф от другого — тип связывания узлов. Число ребер, сходящихся в один и тот же узел, называется его валентностью.
125
Годвард Морган Форстер (1879–1970) — английский писатель и философ. «Только бы соединить…» — эпиграф к его роману «Говардс-Энд» (1910).
В квантовой теории графов, или КТГ, квантовое состояние, описывающее как геометрию пространства, так и поля материи, присутствующей в нем, построено из комбинаций
У графов Сарумпета долгая и славная родословная, которую можно проследить вплоть до работ Майкла Фарадея о «силовых линиях», соединяющих электрические заряды, и теории Уильяма Томсона об атомах как заузленных «вихревых трубках». Ближайшими предшественниками теории Сарумпета явились модель спиновых сетей Роджера Пенроуза, в которой рассмотрены трехвалетные графы с приписанным каждому узлу полуцелым числом, соответствующим возможному значению спина квантовой частицы. Пенроуз изобрел спиновые сети в начале 1970-х и продемонстрировал, как полный набор пространственных направлений может быть получен из простых комбинаторных принципов, применяемых к процессам обмена спином между двумя областями обширной сети.
Обобщение спиновых сетей позднее нашло место в различных вариантах квантовой теории поля (КТП). Волновая функция приписывает каждому возможному расположению частицы амплитуду вероятности, а спиновая сеть, погруженная в пространственную область, аналогичным образом приписывает амплитуду всем возможным полевым конфигурациям. Квантовые состояния, определенные в этом формализме, состоят из линий потока, текущего вдоль ребер сети.
В 1990-е Ли Смолин и Карло Ровелли обнаружили, что в квантовой гравитации, где спиновосетевые состояния наделены простой геометрической интерпретацией, имеет место аналогичное явление: площадь поверхности зависит только от числа ребер сети, пересекающих ее. Эти ребра мыслятся квантованными «линиями потока площади»; в квантовой гравитации площадь и прочие геометрические параметры принимают значения из дискретного спектра вариантов. Впоследствии оказывается удобным проквантовать и саму топологию, причем узлы и ребра постепенно вытесняют обычное представление о пространстве как о континууме точек.
В первые десятилетия нового тысячелетия Джон Баэз, Фотини Маркопулу, Хосе-Антонио Сапата и их коллеги добились выдающихся результатов в исследовании законов динамики спиновых сетей. В их подходе процессам межсетевой эволюции (преобразования одной сети в другую) приписываются квантовые амплитуды. В 2030-е Сарумпет начал систематизацию этих работ и на их основе построил новую модель, в которой использовал графы произвольной валентности с неразмеченными узлами.
Геометрия трехмерного пространства возникает при рассмотрении четырехвалентных графов, где четыре ребра, исходящие из каждого узла, ограничивают площадь грани так называемого «квантового тетраэдра». Если рассматривать графы высших валентностей, можно столкнуться с нежелательными осложнениями: структуру взрывоподобно заполонят новые измерения. Но Сарумпет вывел простой динамический закон, ограничивающий среднюю валентность значением 4. В то же время трехвалентные и пятивалентные узлы (так называемые «допанты» [126] по аналогии с примесями в полупроводниках) разрешены правилами Сарумпета в том смысле, что они образуют специальные узоры: замкнутые, возможно, заузленные цепи с переменной валентностью. Эти петли узлов-допантов, классифицированные по симметриям и типам взаимодействий, находятся в отличном соответствии с частицами СМ.
126
В физической химии так называются примесные атомы, по достижении определенной концентрации меняющие свойства основного материала (обычно полупроводника или аморфного сплава).
Поскольку характерная площадь, отграниченная ребрами квантового графа, по порядку величины соответствует нескольким квадратным планковским длинам l2pl, то есть примерно в 1050 раз меньше площади поверхности атома водорода, одно время опасались, что КТГ останется недоступна экспериментальной проверке еще много веков. Но в 2043 г. компьютерное моделирование позволило выявить новый класс «полимерных состояний»: длинные разомкнутые цепи узлов-допантов, времена полураспада и характерные энергии которых находились уже в пределах досягаемости современной технологии.