Логическая игра
Шрифт:
13. «Некоторые x суть y» и «Ни один x не есть y'».
14. Суждения, в которых субъект состоит из одного-единственного предмета, называются единичными. Например, «Я счастлив», «Джона нет дома» – единичные суждения. Единичные суждения относятся к числу общих суждений, поскольку суждение «Я счастлив» эквивалентно суждению «Все я, которые существуют, счастливы», а суждение «Джона нет дома» – суждению «Всех Джонов, которых я рассматриваю в данным момент, нет дома».
15. Из суждений, начинающихся со слов «некоторые» или «все».
16. В тех случаях, когда суждения начинаются со слов «некоторые» или «ни один». Например, суждение «Некоторые abc суть def» можно преобразовать в суждение «Некоторые bf суть acde», причем и исходное и конечное суждения эквивалентны суждению «Некоторые abcdef
17. Некоторые тигры свирепы.
Ни один тигр не кроток.
18. Некоторые сваренные вкрутую яйца вредны для здоровья.
Ни одно сваренное вкрутую яйцо не полезно для здоровья.
19. Некоторые «я» счастливы.
Ни один «я» не несчастлив.
20. Некоторых Джонов нет дома.
Ни один Джон не дома.
21. Предметы, находящиеся в любой из клеток большой диаграммы, обладают тремя признаками, буквенные обозначения которых стоят у трех вершин данной клетки (единственное иключение составляет признак m' – предполагается, что буквы m', хотя в действительности их и нет, стоят во всех четырех углах большой диаграммы рядом с номерами 9, 10, 15 и 16).
22. Если «Мир предметов» разделен на части по трем различным признакам и нам заданы два суждения, содержащих две различные пары эти признаков, и из них мы можем вывести третье суждение относительно той пары признаков, которые не вошли в первые два суждения, то в этом случае данные два суждения называются «посылками», третье суждение – «заключением», а все три суждения вместе – «силлогизмом». Например, посылками могут быть суждения «Ни один m не есть x'» и «Все m' суть y», из которых можно вывести заключение, содержащее x и y.
23. Если некий признак входит в обе посылки, то содержащий его термин называется «средним термином». Например, если посылки имеют вид суждений «Все m суть x» и «Ни один m не есть y'», то средним термином будет класс «m-предметов».
Если же какой-то признак входит в одну посылку, а противоположный ему признак – в другую, то термины, содержащие эти признаки, можно назвать «средними терминами». Например, если в качестве посылок выбраны суждения «Ни один m не есть x'» и «Все m' суть y», то два класса – «m-предметов» и «m'-предметов» – можно назвать «средними терминами».
24. Потому что места для черных фишек определяются однозначно, в то время как утвердительные суждения (т. е. суждения, начинающиеся со слов «некоторые» или «все») иногда вынуждают нас усаживать красную фишку «на стенку».
25. Потому что единственный вопрос, который нас интересует, состоит в том, можно ли логически вывести данное заключение из данных посылок, иначе говоря, будет ли данное заключение истинным, если посылки истинны.
26. Следует принять соглашение о том, что красная фишка означает «Эта клетка может быть занята», а черная – «Эта клетка не может быть занята», или «Эта клетка должны быть пустой».
27. Ошибка в посылках и ошибка в заключении.
28. Ошибку в заключении можно обнаружить, если при переходе от большой диаграмме к малой у нас не оказывается никаких сведений ни об одной из четырех клеток малой диаграммы.
29. Нужно найти правильное заключение и затем сравнить его с предложенным. Если последнее не тождественно правильному и не составляет его части, мы имеем дело с ошибкой в заключении.
30. В тех случаях, когда предложенное нам заключение является частью правильного заключения. О подобных заключениях мы говорим как об «изъяне в заключении».
2. Суждения, представимые на половине малой диаграммы
1.
2.
3.
4.
5.
6.
7.
Кому-то может показаться, что суждение «Некоторые x существуют» следовало бы изобразить диаграммой.
В действительности же оно содержится в утверждении «Некоторые x суть y'». Красная фишка, стоящая на границе, означала бы лишь, что «одна из двух клеток занята». Это обстоятельство нам уже известно, поскольку мы знаем, что занята именно правая клетка.
8. «Ни один x не есть y», т. е.
9. «Некоторые x суть y'», т. е.
10. «Все x суть y», т. е.
11. «Некоторые x суть y», т. е.
12. «Ни один x не есть y», т. е.
13. «Некоторые x суть y», и «Некоторые x суть y'», т. е.
14. «Все x суть y'», т. е.
15. «Все y суть x'», т. е.
16. «Все y суть x», т. е.
17. «Ни одного y не существует», т. е.
18. «Некоторые y суть x'», т. е.
19. «Некоторые y существуют», т. е.