Логика
Шрифт:
Логическая структура именно этого модуса часто лежит в основе многих детективных сюжетов и реальной следственной практики. Совершено преступление, и следователь очерчивает круг возможных участников преступления. Дальнейшая его работа или развитие сюжета заключаются в том, что он проверяет подозреваемых и по одному отсеивает их: этот был болен, тот сидел в тюрьме в момент совершения преступления, того видели несколько человек в другом месте и т.д. Кто останется – тот и преступник. Это и есть отрицающе-утверждающий модус: преступление мог совершить A или B; A не мог совершить преступления, следовательно, его совершил B.
Хорошо, если в разделительной посылке перечислены все возможные участники преступления. А если нет?
Конечно, в повседневной жизни и в профессиональной деятельности мы не ограничиваемся теми простыми выводами, с которыми познакомились. Мы можем соединять и комбинировать их самыми разнообразными способами, например, в одном рассуждении можно соединить условно-категорический и разделительно-категорический силлогизмы, тогда мы получим то, что называют дилеммой:
Если пойдешь направо, коня потеряешь. Если пойдешь налево, голову потеряешь. Но нужно идти направо или налево. Придется потерять коня или голову.
Но сложные комбинации умозаключений можно разложить на их простые формы и, таким образом, проверить правильность наших рассуждений.
6) Зашли как-то три крестьянина на постоялый двор. Попросили они хозяйку сварить им чугунок картофеля, а сами повалились спать. Хозяйка сварила картофель и поставила чугунок на стол.
Проснулся один крестьянин, посчитал количество картофелин и съел ровно 1/3 часть. После этого он опять улегся спать. Проснулся другой крестьянин, посчитал картофелины и, думая, что никто еще не ел, съел ровно 1/3 часть. И тоже лег досыпать. Наконец, проснулся третий крестьянин, посчитал количество картофелин и, думая, что никто еще не ел, съел ровно 1/3 часть. Тут проснулись и его товарищи. Заглянули в чугунок, а там осталось всего 8 картофелин.
Спрашивается: сколько всего картофелин сварила хозяйка? Сколько штук съел каждый крестьянин? Сколько еще должен съесть каждый крестьянин, чтобы всем досталось поровну?
7) Жил-был один дехканин, и было у него 17 основ и 3 сына. Умирая, он завещал поделить ослов между сыновьями таким образом: 1/2 – старшему сыну; 1/3 – среднему и 1/9 – младшему. Кинулись братья делить наследство, да что-то никак не получается: не рубить же осла на части! Позвали судью на помощь, но и тот ничего не смог придумать. Кто-то посоветовал братьям обратиться за помощью к одному мудрому старцу, живущему в соседней деревне. Тот приехал, разделил ослов между братьями так, как завещал отец, и уехал, провожаемый благодарностями.
Как сумел мудрец выполнить завещание отца?
Индукция
Откуда берутся посылки дедуктивных выводов? Что дает нам основание считать их истинными? Конечно, иногда их можно вывести дедуктивно из более общих суждений и посредством этого обосновать их истинность. Однако рано или поздно мы дойдем до таких суждений, для обоснования которых нет более общих посылок, следовательно, их истинность нельзя обосновать дедуктивно. В таких случаях мы прибегаем к помощи индукции.
Индуктивными называют умозаключения, расширяющие наше знание и дающие не достоверный, а лишь вероятный вывод. Посылки индуктивного рассуждения лишь в той или иной степени подтверждают или делают вероятным заключение, но отнюдь не обеспечивают его достоверности. Наиболее типичным индуктивным заключением является вывод от частных случаев к общему утверждению.
В повседневной жизни мы на каждом шагу делаем такие выводы. Когда вы приходите в некое государственное учреждение и даете взятку сначала одному чиновнику, затем другому, вы думаете про себя: «Все чиновники здесь – взяточники!» Или девушка, встретив одного молодого человека и разочаровавшись в нем, затем встретив другого, быть может, уже не столь молодого человека, и вновь испытав разочарование, порой приходит к выводу:
«Все мужчины – подлецы!»
Различают популярную и научную индукцию. При популярной индукции мы спешим сделать обобщение, опираясь на первые попавшиеся частные случаи. Наши примеры как раз демонстрируют индукцию такого рода. Достоверность вывода при популярной индукции весьма невысока, здесь очень легко совершить ошибку, что мы обычно и делаем.
Если же мы сознательно стремимся повысить достоверность индуктивного вывода и принимаем для этого некоторые меры, то такая индукция называется научной. В частности, желательно исследовать как можно больше представителей того класса предметов, к которому относится обобщение. Далее, изучаемые факты должны быть как можно более разнообразными. Наконец, эти факты должны быть типичными для данного класса явлений. При соблюдении этих условий достоверность индуктивного вывода существенно повышается. Так, если бы вы захотели сделать свой вывод о чиновниках данного учреждения более достоверным, вам следовало бы не ограничиваться одним-двумя встреченными вами чиновниками, а познакомиться с большим их количеством, причем принадлежащими к разным ступеням чиновничьей иерархии. Многочисленные примеры подобных выводов можно найти в социологии: стараясь обеспечить достоверность своих утверждений, социолог, по сути, заботится о соблюдении правил научной индукции.
Однако следует помнить о том, что и при соблюдении указанных правил мы можем приходить к ошибочным заключениям. Частые ошибки тех же социологов это наглядно демонстрируют. Но вот пример, придуманный физиками, иллюстрирующий, как обстоит дело в естествознании: «Употреблять в пищу огурцы опасно – с ними связаны все телесные недуги и вообще людские несчастья. Практически все люди, страдающие хроническими заболеваниями, ели огурцы. 99,9% всех людей, умерших от рака, при жизни ели огурцы. 99,7% всех лиц, ставших жертвами авто- и авиакатастроф, употребляли в пищу огурцы в течение двух недель, предшествовавших фатальному несчастному случаю. 93,1% всех несовершеннолетних преступников происходят из семей, где огурцы потребляли постоянно». Этот пример показывает, как легко оснастить ошибочную гипотезу статистическими данными и выдать глупость за научную истину.
Всегда следует помнить о том, что как бы хорошо ни был обоснован индуктивный вывод, сколь бы многочисленными ни были свидетельства в его пользу, с логической точки зрения он всегда остается проблематичным. Поэтому всякий выход за пределы имеющегося знания, всякая попытка получить новое знание связана с риском – с риском ошибиться. Но именно благодаря этому история человеческого познания представляет собой не унылую последовательность неизменных успехов, а драматическое приключение, в котором победы сменяются поражениями, взлеты – падениями, успехи – разочарованиями. Именно риск делает научную игру столь увлекательной и азартной.
Ответы
1) Эта задача решается просто: нужно переставлять часовых из середины бастиона на его углы, как показано на следующих рисунках:
2) К сожалению, здесь простой и наглый обман. Путешественники действительно заплатили 27 руб. Но это и все, никаких 30 руб. уже нет! Из этих 27 руб. хозяйка взяла себе 25 руб. и 2 руб. осталось у мальчика. На каком основании к этим 27 руб. я добавляю еще 2 руб.? Откуда я их взял? Где они? И деньги хозяйки, и деньги мальчика уже посчитаны – они в уплаченных 27 руб. Я выдумал эти 2 руб., чтобы ввести вас в заблуждение.