Чтение онлайн

на главную - закладки

Жанры

Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Шрифт:

42 х 7 = (40 + 2) х 7 = (40 х 7) + (2 х 7) = 280 + 14 = 294

Вы можете спросить, почему распределительный закон в принципе работает. Чтобы понять его интуитивно, представьте, что у вас есть 7 сумок, в каждой по 42 монеты, 40 из которых золотые, а 2 серебряные. Сколько всего у вас монет? Существует два способа получить ответ. С одной стороны, исходя из определения умножения, скажем, что у вас есть 42 х 7 монет. С другой — всего 40 х 7 золотых и 2 х 7 серебряных монет.

Следовательно, всего имеем (40 х 7) + (2 х 7) монет. Отвечая на наш вопрос двумя способами, получим 42 х 7 = (40 х 7) + (2 х 7). Обратите внимание, что числа 7, 40 и 2

можно заменить любыми другими (a, b или c), сохранив общий логический принцип. Вот почему распределительный метод работает!

Используя подобную аргументацию о золотых, серебряных и медных монетах, получим более общий закон.

(b + с + d) х а = (b х а) + (с х а) + (d х а)

Следовательно, чтобы умножить 326 х 7, разбиваем 326 как 300 + 20 + 6. Потом умножаем на 7 следующим образом: 326 х 7 = (300 + 20 + 6) х 7 = (300 х 7) + (20 х 7) + (6 х 7), а затем складываем отдельные произведения.

Что касается возведения в квадрат, представленный ниже алгебраический закон оправдывает мой метод. (A и d — любые числа.)

Глава 3

Усовершенствованные произведения: умножение среднего уровня

Магия чисел действительно захватывает, когда выступаешь перед аудиторией. Мой первый опыт публичных выступлений пришелся на восьмой класс, в уже довольно «преклонном возрасте» тринадцати лет. Многие матемаги начинали еще раньше. Например, Зера Колберн (1804–1839) мог производить молниеносные расчеты еще до того, как научился читать и писать, и начал развлекать зрителей в возрасте шести лет! Когда мне было тринадцать, моя учительница алгебры записала на доске задачу, где следовало вычислить 1082. Я быстро выпалил: «108 в квадрате будет 11 664!»

Учительница сделала расчет на доске и получила такой же ответ. Глядя немного испуганно, она произнесла: «Да, верно. Как ты это сделал?» Тут я ей и выложил: «Я округлил 108 до 100 и увеличил 108 до 116. После перемножил 116 на 100, получил 11 600, а потом просто прибавил квадрат 8, в итоге получилось 11 664».

Она никогда раньше не сталкивалась с таким методом.

Я был взволнован. Даже успел самонадеянно подумать о «теореме Бенджамина». Я на самом деле верил в то, что открыл нечто новое. Когда я в конце концов наткнулся на этот метод спустя несколько лет в книге Мартина Гарднера по занимательной математике Mathematical Carnival («Математический карнавал», 1965), мой день был испорчен! Хотя то, что я сам нашел его, все же воодушевляло.

Вы тоже можете произвести впечатление на друзей (или учителей), используя некоторые из довольно удивительных примеров на умножение. В конце предыдущей главы вы узнали, как умножить двузначное число само на себя. В этой главе вы научитесь перемножать два разных двузначных числа, а затем попробуете приложить руку (вернее, мозг) к возведению трехзначных чисел в квадрат. При этом для решения таких задач не обязательно знать, как умножить два двузначных числа. Так что можете начать осваивать любой из этих навыков в любом порядке.

ЗАДАЧИ НА УМНОЖЕНИЕ ТИПА «2 НА 2»

При возведении в квадрат двузначного числа всегда применяется одинаковый метод. Но перемножать двузначные числа можно разными способами, которые в итоге приведут вас к одному и тому же ответу. Лично для меня здесь и начинается самое интересное.

Первый метод, назовем его «метод сложения», можно применять для решения любых задач на умножение типа «2 на 2».

Метод сложения

В методе сложения при перемножении двух двузначных чисел надо всего лишь решить две задачи на умножение типа «2 на 1» и суммировать результаты, например:

Итак, 42 разбиваем на 40 и 2, после чего умножаем 40 х 46 (а это всего лишь 4 х 46 с добавочным нулем, то есть 1840); затем 2 х 46 = 92. Наконец складываем 1840 + 92 = 1932, как и показано выше.

Вот еще один способ решения той же задачи:

Но здесь есть небольшая проблема, которая заключается в том, что умножить 6 х 42 сложнее, чем 2 х 46, как в первом способе. Более того, прибавить 1680 + 252 сложнее, чем суммировать 1840 + 92. Так как же решить, какое из чисел разбивать на части? Я стараюсь выбирать то, которое приведет к более простой задаче на сложение. В большинстве случаев, но не всегда, желательно разбивать число с наименьшей цифрой в конце, потому что это обычно приводит к меньшим числам при сложении.

Попробуйте свои силы на следующих примерах.

В последнем примере показано, почему числа с 1 в конце лучше всего представлять в виде суммы. В случае если оба числа оканчиваются на одинаковую цифру, следует делить на части большее число, как показано ниже.

Если одно из чисел намного больше другого, то его разбиение часто оправдывает себя, даже если цифра на конце больше цифры на конце меньшего числа. Вы поймете, что я имею в виду, когда решите следующие задачи двумя разными способами.

Показался ли вам первый способ быстрее второго? Мне — да.

Вот еще одно исключение из правила: разбивайте на части число с наименьшей цифрой на конце. При умножении числа, близкого и большего 50, на четное, следует разбить на части именно число, близкое к 50.

Последняя цифра числа 84 меньше, чем цифра на конце числа 59. Но если разбить на части 59, то результат первого умножения будет кратным 100, что упрощает последующую задачу на сложение.

Поделиться:
Популярные книги

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя

Мимик нового Мира 14

Северный Лис
13. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 14

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Я еще граф

Дрейк Сириус
8. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще граф

(Не) Все могут короли

Распопов Дмитрий Викторович
3. Венецианский купец
Фантастика:
попаданцы
альтернативная история
6.79
рейтинг книги
(Не) Все могут короли

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Мимик нового Мира 13

Северный Лис
12. Мимик!
Фантастика:
боевая фантастика
юмористическая фантастика
рпг
5.00
рейтинг книги
Мимик нового Мира 13