Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

Еще три зависимости, представленные на рис. 3.8 также весьма напоминают характерные для ряда систем и устройств характеристики. Первая зависимость очень похожа на нормированные резонансные кривые колебательных контуров и иных резонаторов. Другая зависимость позволяет моделировать нелинейные характеристики усилителей. Ее замечательные свойства — симметрия и возможность изменения плавности перехода от одного состояния (0) к другому (1). А третья зависимость характеризует сдвиг по горизонтали некоторой передаточной зависимости. Она также очень напоминает кривые гистерезиса магнитных материалов.

Рис. 3.8.

Часть документа с тремя дополнительными экспоненциальными зависимостями

Следующая тройка зависимостей представлена на рис. 3.9. Эти зависимости напоминают ранее описанные, но с некоторыми индивидуальными особенностями. Например, средняя зависимость дает спад, а не нарастание значения «выхода» при нарастании значения переменной х. Семейство зависимостей в конце рис 3.9 характерно плавным переходом от симметричной зависимости к явно несимметричной, имеющей быстрое нарастание и относительно медленный спад. Такой характер нередко имеет выходной сигнал усилителя, возбуждаемого перепадом напряжения.

Рис. 3.9. Часть документа с еще тремя экспоненциальными зависимостями

Три последние зависимости (рис. 3.10) прекрасно подходят для описания вольт-амперных характеристик ряда электронных приборов. Первые две из них напоминают семейства вольт-амперных характеристики полевых транзисторов и электронных ламп. Верхняя соответствует приборам с постоянной крутизной, на что указывает равное расстояние между кривыми. А вторая напоминает семейство вольт-амперных характеристик полевого транзистора с нарастающей при больших токах крутизной.

Рис. 3.10. Конец документа с началом на рис. 3.7

Последняя зависимость неплохо подходит для приближения N-образной вольт-амперной характеристики туннельного диода. Это довольно старый, но хорошо известный прибор, который применяется в усилителях и генераторах высокочастотных и сверхвысокочастотных колебаний.

3.2.15. Применение функций с элементами сравнения

В алгоритме вычисления ряда функций заложено сравнение результата с некоторым опорным значением. К таким функциям с элементами сравнения относятся: abs — абсолютное значение числа; ceil — наименьшее целое, большее или равное аргументу; floor — наибольшее целое, меньшее или равное аргументу; frac — дробная часть числа; trunc — целое, округленное в направлении нуля; round — округленное значение числа; signum(х) — знак х (-1 при х<0, 0 при х=0 и +1 при х>0).

Для комплексного аргумента х эти функции определяются следующим образом:

• trunc(x) = trunc(Re(x)) + rtrunc(Im(x));

• round(x) = round(Re(x)) + I*round(Im(x));

• frac(x) = frac(Re(x)) + I*frac(Im(x)).

Для введения определения значения floor(x) от комплексного аргумента прежде всего запишем а=Re(x)-floor(Re(x)) и b=Im(x)-floor(Im(x)). Тогда floor(x)=floor(Re(x))+I*floor(Im(x))+X, где

Наконец, функция ceil для комплексного аргумента определяется следующим образом:

ceil(x) = -floor(-х)

Примеры вычисления выражений с данными функциями представлены ниже (файл calcfun):

> [ceil(Pi), trunc(Pi), floor(Pi), frac(Pi), round(Pi)];

[4, 3, 3, π, -3, 3]

> frac(evalf(Pi));

.141592654

> [ceil(-Pi),trunc(-Pi),floor(-Pi),round(-Pi)];

[-3, -3, -4, -3]

> trunc(2.6+3.4*I);

2+3I

> [signum(-Pi),signum(0),signum(Pi)];

[-1,0,1]

Хотя

функции этой группы достаточно просты, их нельзя относить к числу элементарных функций. Нередко их применение исключает возможность проведения символьных преобразований или дает их существенное усложнение.

3.2.16. Работа с функциями комплексного аргумента

Для комплексных чисел и данных, помимо упомянутых в предшествующем разделе, определен следующий ряд базовых функций: argument — аргумент комплексного числа; conjugate — комплексно-сопряженное число; Im — мнимая часть комплексного числа; Re — действительная часть комплексного числа; polar — полярное представление комплексного числа (библиотечная функция). Примеры вычисления для этих функций (файл calcfun):

> z:=2+3*I;

Z:=2 + 3I

> [Re(z),Im(z),abs(z)];

> [argument(z),conjugate(z)];

> readlib(polar);

proc(r::algebraic, th::algebraic) ... end proc

> polar(z);

> polar(-3.,Pi/2);

В некоторых случаях полезна визуализация операций с комплексными числами. Для этого удобен пакет расширения plots, который позволяет представлять комплексные числа в виде стрелок на комплексной плоскости. Например, для иллюстрации операции умножения двух комплексных чисел

можно использовать следующие графические построения (файл complpot):

> with(plottools):

l1 := arrow([0,0], [1,2], .1, .3, .1, color=green):

l1a := arc([0,0],1.5,0..arctan(2),color=green):

> l2 := arrow([0,0], [1,-8], .1, .3, .1, color=green):

l2a := arc([0,0],.75,0..arctan(.8),color=green):

> l3 := arrow([0,0], [-.6,2.8], .1, .3, .1, color=black):

l3a := arc([0,0],2.5,0..arctan(2.8,-.6),color=black):

> plots[display](l1,l2,l3,l1a,l2a,l3a, axes=normal,view=[-3..3,0..3],scaling=constrained);

Они создают график (рис. 3.11) наглядно иллюстрирующий операцию перемножения двух комплексных чисел, представленных своими радиус-векторами.

Рис. 3.11. Иллюстрация перемножения двух комплексных чисел

3.2.17. Построение графиков функций в Maplet-окне

Поделиться:
Популярные книги

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Маяк надежды

Кас Маркус
5. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Маяк надежды

Великий перелом

Ланцов Михаил Алексеевич
2. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Великий перелом

Сопротивляйся мне

Вечная Ольга
3. Порочная власть
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Сопротивляйся мне

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6