Математические головоломки и развлечения
Шрифт:
поэтому наше решение останется в силе. Обратите внимание, что если убрать центральную сигарету, которая на рисунке обращена прямо на читателя, то шесть оставшихся дадут очень симметричное решение первоначальной задачи.
2. Когда паромы встречаются первый раз (верхняя часть рис. 54), сумма пройденных ими расстояний равна ширине реки.
Рис. 54
Когда
К решению задачи можно подойти и иначе. Пусть ширина реки х. Вначале отношение расстояний, пройденных паромами, равно (x-720)/720. Ко второй встрече оно будет составлять (2х-400)/х+400. Эти отношения равны, из них мы легко находим х.
3. Линия АС является одной из диагоналей прямоугольника ABCD (рис. 55).
Рис. 55
Вторая диагональ BD служит радиусом окружности, длина которого равна 10 единицам. Поскольку диагонали равны, длина линии АС также равна 10 единицам.
4. Электрик закоротил на верхнем этаже пять пар проводов (закороченные попарно провода соединены пунктирными линиями на рис. 56), оставив один провод свободным. Потом он спустился вниз и с помощью тестера нашел нижние концы закороченных пар. На рисунке показано, какими буквами он обозначил провода. Затем он закоротил те провода, которые соединены пунктиром внизу.
Рис. 56
Вернувшись наверх, он разъединил закороченные провода, но оставил их скрученными попарно. Затем он подсоединил тестер к свободному проводу (он знал, что это верхний конец провода F) и к одному из остальных. Определив второй провод, он смог установить, что это Е2, а соседний провод — Е1. Затем он подключил прибор к Е1 и к проводу, который оказался D2. Это позволило электрику установить, что соседний конец принадлежит проводу D1. Следуя своему методу, он легко нашел все провода. Указанный способ годится для любого нечетного числа проводов.
Немного изменив этот метод, можно применить его к любому четному числу проводов больше двух. Предположим, что справа на рис. 56 есть двенадцатый провод. Наверху закорачиваются те же пять пар проводов, а два остаются свободными. Внизу провода закорачиваются, как прежде, а двенадцатый провод обозначается буквой G. Вернувшись наверх, электрик легко находит G: это единственный из двух свободных проводов, который ни с каким другим не связан. Остальные одиннадцать проводов распознаются так же, как раньше.
Существует в каком-то смысле более рациональный метод, применимый к любому числу проводов, кроме двух (задача о двух проводах не имеет решения). Этот метод легко объяснить на схеме из четырнадцати проводов (рис. 57).
Рис. 57
Метод заключается в следующем:
1. Верхний этаж. Закоротите провода по одному, два, три и т. д. Обозначьте закороченные группы буквами А, В, С, D и т. д. Последняя группа может быть неполной.
2. Нижний этаж. Установите выделенные ранее группы проводов с помощью тестера. Пронумеруйте провода и объедините их в новые группы Z, Y, X, W, V…
3. Верхний этаж. Разъедините провода. Теперь их номера можно определить с помощью тестера. Провод 1 —это, конечно, А. Провод 3 — это единственный провод в группе В, соединенный с 1. Его соседом должен быть 2. В группе С только провод 6 соединяется с 1. С 2 соединяется только 5. Провод, остающийся в С, будет 4.
И так далее для других групп.
Чертеж можно неограниченно продолжать вправо. Для случая n проводов чертеж следует оборвать на n– м проводе.
5. Непрерывная линия, которая входит в каждый прямоугольник и выходит из него, обязательно пересекает два отрезка. На рис. 58 каждая из областей А, В и С ограничена нечетным числом отрезков. Следовательно, если линия пересекает все отрезки, то концы ее должны лежать внутри прямоугольников А, В и С. Но у непрерывной кривой только два конца, поэтому на плоскости задача неразрешима.
Рис. 58
Те же рассуждения применимы, если сетка нарисована на сфере или на торе (левый нижний рисунок). Однако на торе сетку можно нарисовать так (правый нижний рисунок), что отверстие тора будет внутри одного из трех прямоугольников А, В или С, и тогда задача решается легко.
6. Из двенадцати спичек можно построить прямоугольный треугольник со сторонами в три, четыре и пять единиц, как показано на рис. 59 слева.
Рис. 59
Его площадь равна шести квадратным единицам.
Изменив положение трех спичек так, как показано на правом рисунке, мы уменьшим площадь фигуры на две квадратные единицы.
Получится многоугольник с площадью, равной четырем квадратным единицам.
Это решение приводится во многих сборниках головоломок.
Имеются и сотни других решений. Существует связь между этой задачей и игрой в полимино, о которой рассказывается в следующей главе. Каждая из пяти фигур тетрамино (состоящих из четырех единичных квадратов каждая) позволяет найти много решений задачи со спичками. Нужно лишь отбрасывать квадраты, заменяя их равновеликими по площади треугольниками до тех пор, пока длина периметра получившейся фигуры не достигнет 12 спичек. Некоторые из таких фигур показаны на рис. 60.