Математические головоломки
Шрифт:
Тремя четверками
ЗАДАЧА
Тремя четверками, не употребляя знаков действий, написать возможно большее число.
444,
РЕШЕНИЕ
Если в данном случае вы поступите по образцу двух предыдущих задач, т. е. дадите ответ
444,
то ошибетесь, потому что на этот раз трехъярусное расположение
как раз дает большее число. В самом деле, 44 = 256, а 4256 больше чем 444.
Тремя
Попытаемся углубиться в это озадачивающее явление и установить, почему одни цифры порождают числовые исполины при трехъярусном расположении, другие – нет. Рассмотрим общий случай.
Тремя одинаковыми цифрами, не употребляя знаков действий, изобразить возможно большее число.
Обозначим цифру буквой а. Расположению
222, 333, 444
соответствует написание
а10а+а, т. е. а11а.
Расположение же трехъярусное представится в общем виде так:
aaa.
Определим, при каком значении а последнее расположение изображает большее число, нежели первое. Так как оба выражения представляют степени с равными целыми основаниями, то б'oльшая величина отвечает большему показателю. Когда же
аа > 11а?
Разделим обе части неравенства на а. Получим:
аа–1 > 11.
Легко видеть, что аа–1 больше 11 только при условии, что а больше 3, потому что
44–1 > 11,
между тем как степени
32 и 21
меньше 11.
Теперь понятны те неожиданности, с которыми мы сталкивались при решении предыдущих задач: для двоек и троек надо было брать одно расположение, для четверок и б'oльших чисел – другое.
Четырьмя единицами
ЗАДАЧА
Четырьмя единицами, не употребляя никаких знаков математических действий, написать возможно большее число.
РЕШЕНИЕ
Естественно приходящее на ум число – 1111 – не отвечает требованию задачи, так как степень
1111
во много раз больше. Вычислять это число десятикратным умножением на 11 едва ли у кого хватит терпения. Но можно оценить его величину гораздо быстрее с помощью логарифмических таблиц.
Число это превышает 285 миллиардов и, следовательно, больше числа 1111 в 25 с лишним млн раз.
Четырьмя двойками
ЗАДАЧА
Сделаем следующий шаг в развитии задач рассматриваемого рода и поставим наш вопрос для четырех двоек.
При каком расположении четыре двойки изображают наибольшее число?
РЕШЕНИЕ
Возможны 8 комбинаций:
Какое же из этих чисел наибольшее?
Займемся сначала верхним рядом, т. е. числами в двухъярусном расположении.
Первое – 2222, – очевидно, меньше трех прочих.
Чтобы сравнить следующие два —
2222 и 2222,
преобразуем второе из них:
2222 = 222-11 = (222)11 = 48411.
Последнее число больше, нежели 2222, так как и основание, и показатель у степени 48411 больше, чем у степени 2222.
Сравним теперь 2222 с четвертым числом первой строки – с 2222. Заменим 2222 б'oльшим числом 3222 и покажем, что даже это большее число уступает по величине числу 2222. В самом деле,
3222 = (25)22 = 2110
– степень меньшая, нежели 2222.
Итак, наибольшее число верхней строки – 2222. Теперь нам остается сравнить между собой пять чисел – сейчас полученное и следующие четыре:
Последнее число, равное всего 216, сразу выбывает из состязания. Далее, первое число этого ряда, равное 224 и меньшее, чем 324 или 220, меньше каждого из двух следующих. Подлежат сравнению, следовательно, три числа, каждое из которых есть степень 2. Больше, очевидно, та степень 2, показатель которой больше. Но из трех показателей
222, 484 и 220 + 2 (= 210 · 2 · 22 106 · 4)
последний – явно наибольший.
Поэтому наибольшее число, какое можно изобразить четырьмя двойками, таково:
Не обращаясь к услугам логарифмических таблиц, мы можем составить себе приблизительное представление о величине этого числа, пользуясь приближенным равенством
210 1000.
В самом деле,