Математические головоломки
Шрифт:
часов после того, как обе стрелки были на двенадцати. Это число является целым (от нуля до 11), так как оно показывает, сколько полных часов прошло после двенадцати.
Когда стрелки обменяются местами, мы найдем аналогично, что с двенадцати часов до времени, показываемого стрелками, прошло
полных часов. Это число также является целым (от нуля до 11).
Имеем систему уравнений
где m
Давая m и n значения от 0 до 11, мы определим все требуемые положения стрелок. Так как каждое из 12 значений m можно сопоставлять с каждым из 12 значений n, то, казалось бы, число всех решений равно 12 · 12 = 144. Но в действительности оно равно 143, потому что при m = 0, n = 0 и при m = 11, n = 11 получается одно и то же положение стрелок.
При m = 11, n = 11 имеем:
х = 60, y = 60,
т. е. часы показывают 12, как и в случае m = 0, n = 0.
Всех возможных положений мы рассматривать не станем; возьмем лишь два примера. Первый пример:
т. е. часы показывают 1 ч
Второй пример:
Соответствующие моменты: 8 ч 28,53 мин и 5 ч 42,38 мин.
Число решений мы знаем: 143. Чтобы найти все точки циферблата, которые дают требуемые положения стрелок, надо окружность циферблата разделить на 143 равные части: получим 143 точки, являющиеся искомыми. В промежуточных точках требуемые положения стрелок невозможны.
Совпадение часовых стрелок
ЗАДАЧА
Сколько есть положений на правильно идущих часах, когда часовая и минутная стрелки совмещаются?
РЕШЕНИЕ
Мы можем воспользоваться уравнениями, выведенными при решении предыдущей задачи: ведь если часовая и минутная стрелки совместились, то их можно обменять местами – от этого ничего не изменится. При этом обе стрелки прошли одинаковое число делений от цифры 12, т. е. х = у. Таким образом, из рассуждений, относящихся к предыдущей задаче, мы выводим уравнение
где m — целое число от 0 до 11. Из этого уравнения находим:
Из двенадцати возможных значений для т (от нуля до 11) мы получаем не 12, а только 11 различных положений стрелок, так как при m = 11 мы находим x = 60,
Искусство отгадывать числа
Каждый из вас, несомненно, встречался с «фокусами» по отгадыванию чисел. Фокусник обычно предлагает выполнить действия следующего характера: задумай число, прибавь 2, умножь на 3, отними 5, отними задуманное число и т. д. – всего пяток, а то и десяток действий. Затем фокусник спрашивает, что у вас получилось в результате, и, получив ответ, мгновенно сообщает задуманное вами число.
Секрет «фокуса», разумеется, очень прост, и в основе его лежат все те же уравнения.
Пусть, например, фокусник предложил вам выполнить программу действий, указанную в левой колонке следующей таблицы:
Затем фокусник просит вас сообщить окончательный результат и, получив его, моментально называет задуманное число. Как он это делает?
Чтобы понять это, достаточно обратиться к правой колонке таблицы, где указания фокусника переведены на язык алгебры. Из этой колонки видно, что если вы задумали какое-то число х, то после всех действий у вас должно получиться 4х + 1. Зная это, нетрудно «отгадать» задуманное число.
Пусть, например, вы сообщили фокуснику, что получилось 33. Тогда фокусник быстро решает в уме уравнение 4x + 1 = 33 и находит: х = 8. Иными словами, от окончательного результата надо отнять единицу (33 – 1 = 32) и затем полученное число разделить на 4 (32: 4 = 8); это и дает задуманное число (8). Если же у вас получилось 25, то фокусник в уме проделывает действия 25 – 1 = 24, 24: 4 = 6 и сообщает вам, что вы задумали 6.
Как видите, все очень просто: фокусник заранее знает, что надо сделать с результатом, чтобы получить задуманное число.
Поняв это, вы можете еще более удивить и озадачить ваших приятелей, предложив им самим, по своему усмотрению, выбрать характер действий над задуманным числом. Вы предлагаете приятелю задумать число и производить в любом порядке действия следующего характера: прибавлять или отнимать известное число (скажем: прибавить 2, отнять 5 и т. д.), умножать [1] на известное число (на 2, на 3 и т. п.), прибавлять или отнимать задуманное число. Ваш приятель нагромождает, чтобы запутать вас, ряд действий. Например, он задумывает число 5 (этого он вам не сообщает) и, выполняя действия, говорит:
1
Делить лучше не разрешайте, так как это очень усложнит «фокус».
– Я задумал число, умножил его на 2, прибавил к результату 3, затем прибавил задуманное число; теперь я прибавил 1, умножил на 2, отнял задуманное число, отнял 3, еще отнял задуманное число, отнял 2. Наконец, я умножил результат на 2 и прибавил 3.
Решив, что уже совершенно вас запутал, он с торжествующим видом сообщает вам:
– Получилось 49.
К его изумлению вы немедленно сообщаете ему, что он задумал число 5.
Как вы это делаете? Теперь это уже достаточно ясно. Когда ваш приятель сообщает вам о действиях, которые он выполняет над задуманным числом, вы одновременно действуете в уме с неизвестным х. Он вам говорит: «Я задумал число…», а вы про себя твердите: «значит, у нас есть х». Он говорит: «…умножил его на 2…» (и он в самом деле производит умножение чисел), а вы про себя продолжаете: «теперь 2x». Он говорит: «…прибавил к результату 3…», и вы немедленно следите: 2x + 3, и т. д. Когда он «запутал» вас окончательно и выполнил все те действия, которые перечислены выше, у вас получилось то, что указано в следующей таблице (левая колонка содержит то, что вслух говорит ваш приятель, а правая – те действия, которые вы выполняете в уме):