Чтение онлайн

на главную - закладки

Жанры

Математические головоломки
Шрифт:

Рис. 5

– А приняли вы в расчет, что трава все время растет? – спрашивает другой.

Замечание резонное: трава непрерывно растет, и если этого не учитывать, то не только нельзя решить задачи, но и само условие ее будет казаться противоречивым.

Как же решается задача?

РЕШЕНИЕ

Введем и здесь вспомогательное неизвестное, которое будет обозначать суточный прирост травы в долях ее запаса на лугу. В одни сутки прирастает у, в 24 дня – 24у; если общий запас принять за 1, то в течение 24 дней коровы съедают

1 + 24у.

В

сутки все стадо (из 70 коров) съедает

а одна корова съедает

Подобным же образом из того, что 30 коров поели бы траву того же луга в 60 суток, выводим, что одна корова съедает в сутки

Но количество травы, съедаемое коровой в сутки, для обоих стад одинаково. Поэтому

откуда

Найдя у (величину прироста), легко уже определить, какую долю первоначального запаса травы съедает одна корова в сутки:

Наконец, составляем уравнение для окончательного решения задачи: если искомое число коров х, то

откуда х = 20.

20 коров поели бы всю траву в 96 дней.

Задача Ньютона

Рассмотрим теперь ньютонову задачу о быках, по образцу которой составлена сейчас рассмотренная.

Задача, впрочем, придумана не самим Ньютоном; она является продуктом народного математического творчества.

«Три луга, покрытые травой одинаковой густоты и скорости роста, имеют площади: га, 10 га и 24 га. Первый прокормил 12 быков в продолжение 4 недель; второй – 21 быка в течение 9 недель. Сколько быков может прокормить третий луг в течение 18 недель?»

РЕШЕНИЕ

Введем вспомогательное неизвестное у, означающее, какая доля первоначального запаса травы прирастает на 1 га в течение недели. На первом лугу в течение недели прирастает травы

, а в течение 4 недель
 того запаса, который первоначально имелся на 1 га. Это равносильно тому, как если бы первоначальная площадь луга увеличилась и сделалась равной

гектаров. Другими словами, быки съели столько травы, сколько покрывает луг площадью в

 гектаров. В одну неделю 12 быков поели четвертую часть этого количества, а 1 бык в неделю
 часть, т. е. запас, имеющийся на площади

гектаров.

Подобным же образом находим площадь луга, кормящего одного быка в течение недели, из данных для второго луга:

недельный прирост на 1 га = у,

9-недельный прирост на 1 га = 9y,

9-недельный прирост на 10 га = 90у.

Площадь участка, содержащего запас травы для прокормления 21 быка в течение 9 недель, равна

10 + 90y.

Площадь, достаточная для прокормления 1 быка в течение недели, —

гектаров. Обе нормы прокормления должны быть одинаковы:

Решив это уравнение, находим

Определим теперь площадь луга, наличный запас травы которого достаточен для прокормления одного быка в течение недели:

гектаров. Наконец, приступаем к вопросу задачи. Обозначив искомое число быков через х, имеем:

откуда x = 36. Третий луг может прокормить в течение 18 недель 36 быков.

Перестановка часовых стрелок

ЗАДАЧА

Биограф и друг известного физика А. Эйнштейна А. Мошковский, желая однажды развлечь своего приятеля во время болезни, предложил ему следующую задачу (рис. 6):

Рис. 6

«Возьмем, – сказал Мошковский, – положение стрелок в 12 часов. Если бы в этом положении большая и малая стрелки обменялись местами, они дали бы все же правильные показания. Но в другие моменты, – например, в 6 часов, взаимный обмен стрелок привел бы к абсурду, к положению, какого на правильно идущих часах быть не может: минутная стрелка не может стоять на 6, когда часовая показывает 12. Возникает вопрос: когда и как часто стрелки часов занимают такие положения, что замена одной другою дает новое положение, тоже возможное на правильных часах?

– Да, – ответил Эйнштейн, – это вполне подходящая задача для человека, вынужденного из-за болезни оставаться в постели: достаточно интересная и не слишком легкая. Боюсь только, что развлечение продлится недолго: я уже напал на путь к решению.

И, приподнявшись на постели, он несколькими штрихами набросал на бумаге схему, изображающую условие задачи. Для решения ему понадобилось не больше времени, чем мне на формулировку задачи…»

Как же решается эта задача?

РЕШЕНИЕ

Будем измерять расстояния стрелок по кругу циферблата от точки, где стоит цифра 12, в 60-х долях окружности.

Пусть одно из требуемых положений стрелок наблюдалось тогда, когда часовая стрелка отошла от цифры 12 на х делений, а минутная – на у делений. Так как часовая стрелка проходит 60 делений за 12 часов, т. е. 5 делений в час, то х делений она прошла за

 часов. Иначе говоря, после того как часы показывали 12, прошло
 часов. Минутная стрелка прошла у делений за у минут, т. е. за
 часов. Иначе говоря, цифру 12 минутная стрелка прошла
 часов тому назад, или через

Поделиться:
Популярные книги

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Темный Патриарх Светлого Рода 5

Лисицин Евгений
5. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 5

Иван Московский. Том 5. Злой лев

Ланцов Михаил Алексеевич
5. Иван Московский
Фантастика:
попаданцы
альтернативная история
6.20
рейтинг книги
Иван Московский. Том 5. Злой лев

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Назад в СССР: 1985 Книга 4

Гаусс Максим
4. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Назад в СССР: 1985 Книга 4

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8