Математика для любознательных
Шрифт:
– Как вижу я, - сказал ординарец, - быть ученым все же недостаточно, надо еще…
– Что еще?
– спросил Сервадак.
– Быть богатым.
Замечание было встречено дружным хохотом.
Через несколько часов механик доставил профессору тщательно выточенный кубик из горной породы. Теперь ученый имел все необходимое.
– Должен напомнить вам, - начал профессор, - на случай, если вы забыли или не знали, знаменитый закон Ньютона, согласно которому сила притяжения прямо пропорциональна произведению масс и обратно пропорциональна квадрату расстояния. Прошу всегда твердо помнить этот закон.
Он читал лекцию блестяще. Да и аудитория его, надо признать, была хорошо дисциплинирована.
– В этом мешочке, - продолжал он, - 40 пятифранковых монет. На Земле эта кучка монет весит
Произнося эти слова, профессор не спускал глаз с Бен-Зуфа. Он подражал при этом Араго, на своих лекциях всегда смотревшего в упор на того из слушателей, который казался ему наименее понятливым; и когда этот слушатель обнаруживал признаки понимания, лектор приобретал уверенность в том, что прочитанное усвоено всеми [19] .
19
По этому поводу знаменитый астроном рассказывал о следующем забавном случае. Однажды в его гостиную вошел незнакомый ему молодой человек, вежливо поклонившийся профессору.
– С кем имею удовольствие разговаривать?
– осведомился Араго.
– О, м-сье Араго. вы наверное хорошо знаете меня: я посещаю аккуратно ваши лекции, и вы не спускаете с меня взгляда во все время чтения.
– Примеч. Ж. Верна.
Ординарец капитана Сервадака не был тупицей, но был невежествен, - а при данных обстоятельствах это было одно и то же.
Так как Бен-Зуф, по-видимому, понял, профессор продолжал:
– Итак, я подвешиваю мешочек с монетами; наше взвешивание происходит на Галлии, поэтому мы сейчас узнаем, сколько весят монеты на поверхности моей кометы.
Мешочек был подвешен к крючку; указатель после нескольких колебаний остановился, показывая на разделенном круге 133 грамма.
– Итак, - объяснил профессор, - то, что на Земле весит 1 килограмм, на Галлии весит только 133 грамма, т. е. приблизительно в 7 раз меньше. Ясно?
Бен-Зуф кивнул головой, и профессор, ободренный, продолжал:
– Вы понимаете, конечно, что результат, полученный с помощью пружинных весов, совершенно недостижим на весах обыкновенных. В самом деле: если на одну чашку таких весов положить эти монеты, на другую - гирю в один килограмм, то обе чашки потеряют в весе на Галлии одинаково, и равновесие не нарушится. Понятно?
– Даже мне, - ответил ординарец.
– Итак, здесь вес в 7 раз меньше, чем на земном шаре. Отсюда следует, что напряжение тяжести на Галлии составляет седьмую часть напряжения тяжести на поверхности Земли.
– Прекрасно, - ответил Сервадак.
– Теперь, дорогой профессор, перейдем к массе.
– Нет, сначала к плотности, - возразил Розетт.
– В самом деле, - вмешался лейтенант Прокофьев.
– Раз объем Галлии известен, то, зная плотность, мы получим и массу.
Он был прав; оставалось лишь произвести измерение плотности.
К этому и приступил профессор. Он взял выточенный из горной породы кубик объемом в один кубический дециметр.
– Этот кубик, - объяснил он, - состоит из того неизвестного вещества, которое мы всюду находили на Галлии во время кругосветного плавания. По-видимому, моя комета целиком состоит из этого вещества. Здесь перед нами кубический дециметр этого минерала. Сколько бы весил он на Земле? Мы найдем его земной вес, если умножим на 7 вес его на Г аллии, так как напряжение тяжести на Галлии в 7 раз слабее, чем на Земле. Взвесим же этот образчик. Это равносильно тому, как если бы мы нацепили на крючок весов нашу комету.
Кубик был подвешен к весам, и стрелка показала 1 килограмм 430 граммов.
– Один килограмм 430 граммов, - громко объяснял профессор, - умноженные на 7, составляют почти ровно 10 килограммов. А так как средняя плотность земного шара круглым счетом равна 5, то средняя плотность Галлии вдвое более плотности Земли. Если бы не это обстоятельство, напряжение тяжести на комете было бы не в 7 раз слабее
Итак, теперь уже были известны диаметр Галлии, ее поверхность, объем, плотность и напряжение тяжести. Оставалось определить ее массу, а следовательно, и вес.
Вычисление было выполнено быстро. Так как кубический дециметр вещества Галлии весил 10 земных килограммов, то вся комета должна весить столько раз по 10 килограммов, сколько в ее объеме содержится кубических дециметров. Объем Галлии, как мы уже знаем, равен 212.006.737 кубическим километрам. Поэтому вес Галлии выражается в килограммах огромным числом из 22 цифр, а именно:
2 120 067 370 000 000 000 000,
т. е. 2120 триллионов 67.370 биллионов килограммов [20] . Такова в земных килограммах масса Галлии.
20
Здесь биллионом называется миллион миллионов, а триллионом - миллион таких биллионов. В подлиннике проведена другая система наименований: биллионом (или миллиардом) называется 1000 миллионов, триллионом - миллион миллионов, и далее каждой тысяче (а не миллиону) единиц предыдущего наименования дается новое название: квадрильон, квинтильон, секстильон, септильон, октальон, нональон, декальон, эндекальон, додекальон.
– Ред.
– Сколько же тогда весит Земля?
– спросил ординарец.
– А понимаешь ли ты, что такое миллиард?
– спросил его Сервадак.
– Плоховато, капитан.
– Ну так знай же, что от начала нашей эры не прошло еще одного миллиарда минут [21] , и если бы ты должен был миллиард франков, то, начав выплачивать с того времени по франку каждую минуту, ты до сих пор не расплатился бы.
– По франку в минуту!
– воскликнул Бен-Зуф.
– Да я разорился бы в первую четверть часа. А сколько же все-таки весит Земля?
21
Миллиард минут истекло лишь 29 апреля 1902 г. в 10 ч. 40 м. утра.
– Ред.
– Шесть квадриллионов 604 тысячи триллионов килограммов [22] , - ответил лейтенант Прокофьев.
– Число это состоит из 25 цифр.
– А Луна?
– 73 тысячи 700 триллионов килограммов.
– Только всего. А Солнце?
– Два квинтильона [23] килограммов, число из 31 цифры.
– Ровно два квинтильона?
– воскликнул Бен-Зуф.
– Наверное, на несколько граммов ошиблись…
Профессор бросил на ординарца презрительный взгляд и величественно вышел из залы, чтобы подняться в свою обсерваторию.
22
Числовые данные приведены в исправленном виде.
– Прим. изд.
23
В подлиннике это число названо: «два нональона» (согласно другой системе наименования больших чисел).
– Ред.
– И к чему, скажите, все эти вычисления, - спросил ординарец, - которые ученые проделывают, словно какие-то фокусы?
– Ни к чему, - ответил капитан, - в этом-то и вся их прелесть!
Жюль Верн держится в этом произведении ныне устарелого взгляда на кометы, считая их голову сплошным твердым шаром большой плотности. В настоящее время голову кометы рассматривают как весьма рыхлое скопление твердых частиц.