Чтение онлайн

на главную

Жанры

Математика для любознательных
Шрифт:

При некотором положении колец получаются, однако, суммы, немного отличающиеся от первоначального ряда. Если, например, повернем кольца так, чтобы складывать пришлось шестикратное число с пятнадцатикратным, то в сумме должно получиться число, умноженное на 6 + 15 = 21. А такое произведение, как легко догадаться, составляется уже несколько иначе, чем произведение на множитель, меньший 16. В самом деле: так как наше число есть период дроби равной 1/17, то, будучи умножено на 17, оно должно дать 16 девяток (т. е. столько, сколько их в подразумеваемом знаменателе периодической дроби), или 1 с 17 нулями минус 1. Поэтому при умножении на 21, т. е. на 4 + 17, мы должны получить четырехкратное число, впереди которого стоит 1, а от разряда единиц отнята 1. Четырехкратное же число начнется с цифр, получающихся при

превращении в десятичную дробь простой дроби 4/17.

Порядок остальных цифр нам известен: 5294… Значит, 21-кратное наше число будет

2352941176470588.

Столько именно и получается от сложения кругов цифр при соответственном их расположении. При вычитании числовых колец такого случая, разумеется, быть не может.

Чисел, подобных тем двум, с которыми мы познакомились, существует множество. Все они составляют словно одно семейство, так как объединены общим происхождением - от превращения простых дробей в бесконечные десятичные. Но не всякий период десятичной дроби обладает рассмотренным выше любопытным свойством давать при умножении круговую перестановку цифр. Не вдаваясь в тонкости теории, отметим, что это имеет место только для тех дробей, число цифр периода которых на единицу меньше знаменателя соответствующей простой дроби. Так, например:

Вы можете убедиться испытанием, что периоды дробей, получающихся от превращения 1/19, 1/23 и 1/29 в десятичные, обладают теми же особенностями, как и рассмотренные нами периоды дробей 1/7 и 1/17.

Например, от 1/29 получаем число

0344827586206896 551724137931.

Если указанное сейчас условие (относительно числа цифр периода) не соблюдено, то соответствующий период дает число, не принадлежащее к занимающей нас семье интересных чисел. Например, 1 / 13 дает десятичную дробь с шестью (а не с 12) цифрами в периоде:

1 / 13 = 0,076923.

Помножив на 2, получаем совершенно иное число:

2 / 13 = 0,153846.

Почему? Потому что среди остатков от деления 1:13 не было числа 2. Различных остатков было столько, сколько цифр в периоде, т. е. 6; различных же множителей для дроби 1/13 у нас 12; следовательно, не все множители будут среди остатков, а только 6. Легко убедиться, что эти множители следующие: 1, 3, 4, 9, 10, 12. Умножение на эти 6 чисел дает круговую перестановку (076923 x 3 = 230769), на остальные - нет. Вот почему от 1/13 получается число, лишь отчасти пригодное для «магического кольца». То же надо сказать и о целом ряде других периодов.

После этого, думаем, нельзя не согласиться, что длиннейшие периоды бесконечных дробей представляют собою настоящую Калифорнию интереснейших арифметических достопримечательностей.

Глава VI

Фокусы без обмана

Искусство индусского царя

Арифметические фокусы - честные, добровестные фокусы. Здесь не стремятся обмануть, не стараются усыпить внимание зрителя. Чтобы выполнить арифметический фокус, не нужны ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие-либо другие артистические способности, требующие иногда многолетних упражнений. Весь секрет арифметического фокуса состоит в использовании любопытных свойств чисел, в близком знакомстве с их особенностями. Кто знает разгадку такого фокуса, тому все представляется простым и ясным; а для незнающего арифметики - самое прозаическое действие, например умножение, кажется уже чем-то вроде фокуса.

Было время, когда выполнение даже обыкновенных арифметических действий над большими числами, знакомых теперь каждому школьнику, составляло искусство лишь немногих и казалось остальным какою-то сверхъестественною способностью. В древнеиндусской повести «Наль и Дамаянти» [68] находим отголосок такого взгляда на арифметические действия. Наль, умевший превосходно править лошадьми, возил однажды своего хозяина, царя Ритуперна, мимо развесистого дерева - Вибитаки.

68

Русский перевод (вольный) Жуковского. Эпизод, о котором далее идет речь, описан в главе VIII этой повести.

Вдруг он увидел вдали Вибитаку - ветвисто-густою Сенью покрытое дерево. «Слушай, - сказал он: - «Здесь на земле никто не имеет всезнанья; в искусстве Править конями ты первый; зато мне далося искусство «Счета»…

И в доказательство своего искусства царь мгновенно сосчитал число листьев на ветвистой Вибитаке. Изумленный Наль просит Ритуперна открыть ему тайну его искусства, и царь соглашается.

…Лишь только Вымолвил слово свое Ритуперн, как у Наля открылись Очи, и он все ветки, плоды и листья Вибитаки Разом мог перечесть…

Секрет искусства состоял, как можно догадаться, в том, что непосредственный счет листьев, требующий много времени и терпения, заменялся счетом листьев одной лишь ветки и умножением этого числа на число веток каждого сука и далее - на число сучьев дерева (предполагая, что сучья одинаково обросли ветками, а ветки - листьями).

Разгадка большинства арифметических фокусов столь же проста, как и секрет «фокуса» царя Ритуперна. Стоит лишь узнать, в чем разгадка фокуса, и вы сразу овладеваете искусством его выполнять, как овладел легендарный Наль изумительным искусством быстрого счета. В основе каждого арифметического фокуса лежит какая-нибудь интересная особенность чисел, и потому знакомство с подобными фокусами не менее поучительно, чем занимательно.

Не вскрывая конвертов

Задача № 41

Фокусник вынимает стопку из 300 кредитных билетов по 1 рублю каждый [69] и предлагает вам разложить деньги в 9 конвертах так, чтобы вы могли уплатить ими любую сумму до 300 рублей, не вскрывая ни одного конверта.

Задача представляется вам совершенно невыполнимой. Вы готовы уже думать, что тут дело кроется в какой-нибудь коварной игре слов или неожиданном толковании их смысла. Но вот фокусник, видя вашу беспомощность, сам раскладывает деньги по конвертам, заклеивает их и предлагает вам назвать любую сумму в пределах трехсот рублей.

69

Можно пользоваться и простыми карточками с соответствующими надписями.

Вы называете наугад первое попавшееся число, - например 269.

Без малейшего промедления фокусник подает вам 4 заклеенных конверта. Вы вскрываете их и находите:

Теперь вы склонны заподозрить фокусника в искусной подмене конвертов и требуете повторения опыта. Он спокойно кладет деньги обратно в конверты, заклеивает и оставляет их на этот раз в ваших руках. Вы называете новое число, например 100, или 7, или 293 - и фокусник моментально указывает, какие из лежащих у вас под руками конвертов вы должны взять, чтобы составить требуемую сумму (в первом случае, для 100 р.
– 4 конверта, во втором, для 7 р.
– 3 конверта, в третьем, для 293 р.
– 6конвертов).

Поделиться:
Популярные книги

Утопающий во лжи 4

Жуковский Лев
4. Утопающий во лжи
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Утопающий во лжи 4

Пожиратель душ. Том 1, Том 2

Дорничев Дмитрий
1. Демон
Фантастика:
боевая фантастика
юмористическая фантастика
альтернативная история
5.90
рейтинг книги
Пожиратель душ. Том 1, Том 2

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Провинциал. Книга 3

Лопарев Игорь Викторович
3. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 3