Чтение онлайн

на главную - закладки

Жанры

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь
Шрифт:
* * *

Как прикладной математик я считаю математику прежде всего практическим инструментом осмысления и упорядочивания нашего сложного мира. Математическое моделирование может обеспечить нам преимущество в повседневных ситуациях, и для этого не нужно задействовать сотни нудных уравнений или строк компьютерного кода. Математика по своей фундаментальной сути – шаблон. Каждый раз, когда вы смотрите на мир, вы выстраиваете собственную модель наблюдаемых закономерностей. Если вы можете выделить орнамент в бесконечно повторяющемся переплетении ветвей дерева или в многократной симметрии снежинки, то вы видите математику. Когда вы постукиваете ногой в такт музыкальному произведению или когда поете в душе, а ваш голос отражается и резонирует, вы слышите математику. Когда вы забиваете крученый мяч в сетку или ловите летящий по параболе крикетный мяч, вы практикуете математику. С каждым новым ощущением, каждым кусочком сенсорной информации, модели, которыми вы описываете то, что вас окружает, совершенствуются, перенастраиваются и становятся еще более подробными и сложными. Построение математических моделей, разработанных

для описания нашей замысловатой реальности, – лучший способ понять правила, которые управляют окружающим миром.

Я считаю, что самые простые, самые важные модели – это истории и аналогии. Нагляднее всего демонстрируют неявное влияние математических принципов разнообразные – от невероятных до обыденных – примеры из жизни. Взглянув под правильными углом, мы сможем попытаться выявить скрытые математические правила, которые лежат в основе нашего повседневного практического опыта.

Семь глав данной книги исследуют подлинные истории переломных событий, в которых корректное (или некорректное) применение математики сыграло решающую роль. Это истории болезней, вызванных дефектными генами; истории банкротств, вызванных применением ошибочных алгоритмов; истории невинных жертв судебных ошибок и нечаянных жертв сбоев в работе программного обеспечения. Мы проследим за историями инвесторов, потерявших состояние, и родителей, потерявших детей, – и все из-за математических недоразумений. Мы столкнемся с этическими дилеммами – от проверок благонадежности до манипулирования статистикой. Мы исследуем такие насущные общественные проблемы, как политические референдумы, профилактика заболеваний, уголовное правосудие и искусственный интеллект. В этой книге мы увидим, что математике есть что сказать как по всем этим вопросам – фундаментальным важным, так и по многим другим.

Я буду не просто приводить примеры работы математических принципов в той или иной ситуации – я вооружу вас простыми и полезными в повседневной жизни математическими правилами и инструментами; они помогут занять лучшее место в поезде и сохранить хладнокровие, получив неожиданные результаты медицинских анализов. Я подскажу несложные приемы, которые позволят не запутаться с цифрами и числами. Нам придется немного запачкать руки типографской краской, разбираясь с тем, какие цифры скрывают броские газетные заголовки. Мы сведем близкое знакомство с математическими законами, лежащими в основе потребительской генетики, и понаблюдаем, как они действуют на практике, шаг за шагом отслеживая попытки остановить распространение смертельной болезни.

Как вы, надеюсь, уже поняли, это не учебник математики. И это не книга для математиков. На ее страницах вы не найдете ни одного уравнения. Смысл книги не в том, чтобы напомнить об уроках математики, которые вы посещали, вероятно, очень-очень давно. Совсем наоборот. Если когда-то вы разочаровались в математике и решили, что она не для вас, что она вам не дается, эта книга избавит от таких комплексов.

Я искренне верю, что математика – для всех и что все могут оценить ее красоту, лежащую в основе сложных явлений, с которыми мы сталкиваемся ежедневно. Срабатывание ложных сигналов тревоги у нас в мозгу – и ложное чувство уверенности, позволяющее нам спокойно спать по ночам; истории, которые навязывают нам соцсети, и мемы, которые распространяются через них, – все это тоже математика. Математика – это лазейки в законе и заплатки, которые их закрывают; технология, которая спасает жизни, и ошибки, которые подвергают их риску; вспышки смертельных болезней и лечебно-профилактические стратегии. Это самый многообещающий шанс найти ответы на фундаментальные вопросы Вселенной и нашего собственного вида. Математика ведет нас по бесчисленным путям жизни и поджидает у гробовой доски, чтобы взглянуть, как мы делаем последний вдох.

Глава 1

Мыслить шире: удивительная сила и отрезвляющие пределы экспоненциального поведения

Даррен Кэддик – инструктор по вождению из Калдикота, небольшого городка в Южном Уэльсе. В 2009 году его приятель сделал ему заманчивое предложение. Вложив всего лишь 3000 фунтов стерлингов в местный инвестиционный синдикат и убедив сделать то же самое еще двух человек, Даррен всего через пару недель получил бы 23 000 фунтов. Поначалу, посчитав, что это слишком хорошо, чтобы быть правдой, Кэддик сопротивлялся искушению. Но друзья в конце концов убедили его, что «никто ничего не потеряет, так как схема будет действовать бесконечно». Он решил попытать счастья и вложил свои сбережения в эту схему. Он потерял все и до сих пор, десять лет спустя, расхлебывает последствия.

Кэддик невольно оказался на дне пирамиды, которая просто не могла «действовать бесконечно». Запущенная в 2008 году программа Give and Take («Отдай и получи») перестала привлекать новых инвесторов и рухнула менее чем за год, но за это время свыше 10 000 вкладчиков со всей Великобритании вложили в нее более 21 млн фунтов. 90 % из них потеряли свои три тысячи. Инвестиционные схемы, основанные на том, что вкладчики вовлекают в них новых участников, чтобы получить свои дивиденды, заведомо обречены на неудачу. Количество новых вкладчиков, необходимых на каждом уровне схемы, растет пропорционально количеству людей, уже участвующих в ней. После пятнадцати этапов привлечения инвесторов в подобной пирамиде будет задействовано более 10 000 человек – вроде бы много, но схема «отдай и получи» легко позволяет заполучить такое количество участников. Однако еще через пятнадцать этапов для продолжения работы схемы в нее должен инвестировать уже каждый седьмой человек на планете. Этот феномен быстрого роста, неизбежным итогом которого становится крах всей системы из-за того, что она перестает привлекать новых участников (они заканчиваются физически), называется экспоненциальным ростом.

Сделанного не воротишь

Экспоненциальный рост – это возрастание любой величины пропорционально ее текущим размерам. Представьте, что утром, когда вы открываете пакет молока, туда, прежде чем снова наденете крышку, проникает одна клетка Streptococcus faecalis – бактерии стрептококка группы D. Стрептококк группы D – одна из бактерий, вызывающих скисание и свертывание молока, но разве единственная клетка – повод для беспокойства? [5] Возможно, вас насторожит способность клетки стрептококка группы D делиться в молоке, производя две дочерние клетки каждый час [6] . С каждым новым поколением число клеток увеличивается пропорционально текущему их числу, поэтому общее количество стрептококка растет в геометрической прогрессии.

5

Botina, S. G., Lysenko, A. M., & Sukhodolets, V. V. (2005). Elucidation of the taxonomic status of industrial strains of thermophilic lactic acid bacteria by sequencing of 16S rRNA genes. Microbiology, 74 (4), 448–52. https://doi.org/10.1007/s11021-005-0087-7

6

Cardenas, A. M., Andreacchio, K. A., & Edelstein, P. H. (2014). Prevalence and detection of mixed-population enterococcal bacteremia. Journal of Clinical Microbiology, 52 (7), 2604–8. https://doi.org/10.1128/JCM.00802–14

Lam, M. M. C., Seemann, T., Tobias, N. J., Chen, H., Haring, V., Moore, R. J., Stinear, T. P. (2013). Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin resistant Enterococcus faecium. BMC Genomics, 14, 595. https://doi.org/10.1186/1471–2164–14–595

Кривая, описывающая экспоненциальный рост, напоминает любимую роллерами, скейтбордистами и велосипедистами-трюкачами рампу в четверть трубы. Первоначально градиент рампы очень низкий – кривая очень пологая и набирает высоту лишь постепенно (что и демонстрирует первая линия на рис. 2).

Через два часа в вашем молоке резвятся уже 4 клетки стрептококка, а через четыре часа – 16. Пока что это не выглядит чем-то ужасным, так? Но, как и у рампы, высота экспоненциальной кривой и ее крутизна быстро растут. Рост в геометрической прогрессии поначалу представляется медленным, поэтому последующий резкий взлет может показаться неожиданным. Если оставить молоко на 48 часов, и экспоненциальный рост клеток стрептококка продолжится, то когда вы решите снова попить молока, в пакете может оказаться почти квадриллион (1 000 000 000 000 000) клеток – достаточно, чтобы свернулась ваша кровь, не говоря уж о молоке. В этот момент клеток будет больше, чем людей на нашей планете – 130 000 к одному. Экспоненциальные кривые иногда называют J-образными, так как они почти повторяют крутую кривую буквы J. Разумеется, по мере того, как бактерии используют питательные вещества в молоке и меняют его кислотность (рН), условия для роста ухудшаются, а его экспоненциальность сохраняется относительно недолго. На деле почти в каждом реальном сценарии долгосрочный экспоненциальный рост оказывается неустойчивым, а во многих случаях и патологическим, поскольку растущий объект истощает ресурсы донора, лишая его жизнеспособности. Так, устойчивый экспоненциальный рост клеток в организме является характерным признаком рака.

Рис. 2. J-образная кривая экспоненциального роста (слева) и спада (справа)

Другой пример экспоненциальной кривой – водная горка с эффектом свободного падения: в своей верхней части она настолько крута, что посетители этого аттракциона испытывают чувство невесомости. Спускаясь по такой горке, мы путешествуем по экспоненциальной кривой спада, а не по кривой роста (пример такого графика – вторая линия на рис. 2). Экспоненциальное затухание происходит, когда количество уменьшается пропорционально своему текущему объему. Представьте, что вы открываете огромный пакет М&Ms, выливаете их на стол и съедаете все конфетки, упавшие на стол буквой М кверху. Остальное кладете обратно в пакет – до завтра. На следующий день встряхните пакет и снова вывалите конфеты на стол. Снова съешьте все те, что лежат буквой M кверху, а остальное положите обратно. Каждый раз, когда вы выливаете конфеты из пакета, вы съедаете примерно половину от остатка, независимо от того, сколько конфет вы съели в первый раз. Количество конфет уменьшается пропорционально количеству оставшихся в пакете, то есть происходит экспоненциальное падение их общего числа. Точно так же экспоненциальная водяная горка начинается высоко и почти вертикально, так что скатывающийся падает очень быстро. Когда у нас много конфет, то и на съедение их выпадает много. Но кривая постепенно теряет свою крутизну, пока не станет почти горизонтальной к концу горки; чем меньше сладостей у нас остается, тем меньше конфет мы получаем с каждым новым днем. Каждая конкретная конфета падает буквой М вверх или вниз случайно и непредсказуемо, но предсказуемое затухание экспоненциальной кривой водной горки проявляется в количестве остающихся у нас с течением времени конфет.

В этой главе мы выявим скрытую связь между экспоненциальным поведением и повседневными явлениями: распространением эпидемии в популяции или мемов в интернете; быстрым ростом эмбриона и слишком медленным ростом денег на наших счетах; тем, как мы воспринимаем время, и даже тем, как взрывается ядерная бомба. По ходу дела мы постепенно и аккуратно раскроем всю трагедию пирамиды «Отдай и получи». Истории людей, потерявших сбережения в подобных схемах, демонстрируют, как важно уметь мыслить экспоненциально, что, в свою очередь, поможет нам предвосхищать невероятные порой темпы изменений в современном мире.

Поделиться:
Популярные книги

Идущий в тени. Книга 2

Амврелий Марк
2. Идущий в тени
Фантастика:
фэнтези
6.93
рейтинг книги
Идущий в тени. Книга 2

Сонный лекарь 4

Голд Джон
4. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 4

Возрождение Феникса. Том 1

Володин Григорий Григорьевич
1. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.79
рейтинг книги
Возрождение Феникса. Том 1

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Партиец

Семин Никита
2. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Партиец

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

В теле пацана 4

Павлов Игорь Васильевич
4. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 4

Ваше Сиятельство 7

Моури Эрли
7. Ваше Сиятельство
Фантастика:
боевая фантастика
аниме
5.00
рейтинг книги
Ваше Сиятельство 7

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Мой любимый (не) медведь

Юнина Наталья
Любовные романы:
современные любовные романы
7.90
рейтинг книги
Мой любимый (не) медведь

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Пустоши

Сай Ярослав
1. Медорфенов
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Пустоши