Математика. Утрата определенности.
Шрифт:
Далее Штифель добавляет, что настоящие числа — это либо целые числа, либо дроби, а поскольку иррациональные числа не принадлежат ни к тем, ни к другим, их нельзя считать настоящими числами. Столетие спустя Паскаль и Барроу утверждали, что иррациональные числа не более чем символы, не существующие независимо от геометрических величин, и что логика арифметических операций, производимых над иррациональными числами, должна быть обоснована с помощью теории величин Евклида, хоть эта теория и не в полной мере отвечала поставленной так задаче. {69}
69
Теория Евдокса — Евклида содержала почти безупречное определение иррациональных чисел (которым придавалось обличие отношений отрезков) и условий их равенства — но, разумеется, проблемы логического обоснования действий над иррациональными числами здесь не были доведены до того уровня, который приобрели они в математике 2-й половины XIX в.
Высказывались и иные утверждения: по мнению некоторых европейских математиков, иррациональные
Более того, когда Декарт в своей «Геометрии» (1637) и Ферма в рукописи 1629 г. разработали аналитическую геометрию, ни тот, ни другой не имели ясного представления об иррациональных числах. Тем не менее оба исходили из предположения, что между всеми положительными действительными числами и точками на прямой существует взаимно-однозначное соответствие, т.е. что расстояние от любой точки на прямой до какой-то точки, принятой за начало отсчета, может быть выражено числом. Так как многие из чисел при этом оказывались бы иррациональными, Декарт и Ферма тем самым неявно допускали существование иррациональных чисел, несмотря на то что тогда оно еще никак не было логически обосновано.
Европейцам пришлось столкнуться и с проблемой отрицательных чисел. Эти числа стали известны в Европе из арабских текстов, но большинство математиков XVI-XVII вв. не считали отрицательные числа «настоящими» или утверждали, что отрицательные числа не могут быть корнями уравнений. Никола Шюке [1445(?)-1500(?)] в XV в. и Штифель в XVI в. заявляли, что отрицательные числа лишены всякого смысла. Кардано включал отрицательные величины в число корней рассматриваемых им уравнений, но полагал, что отрицательные корни — это просто символы, не имеющие реального смысла. Отрицательные корни уравнений Кардано называл фиктивными и противопоставлял их действительным, т.е. положительным, корням. Виет полностью отвергал отрицательные числа. Декарт принимал их лишь с определенными оговорками. Отрицательные корни уравнений Декарт называл ложными на том основании, что они якобы представляют числа, которые меньше, чем ничто. Однако Декарту удалось показать, как, исходя из любого уравнения, можно построить другое уравнение, корни которого больше корней исходного на любую заданную величину. Тем самым Декарт указал способ, позволяющий преобразовать уравнение с отрицательными корнями в уравнение с положительными корнями. «Фиктивные» корни при таком преобразовании переходили в действительные, и поэтому Декарт неохотно смирился с отрицательными числами, но сомнения и тревоги так и не оставили его. {70} Паскаль считал, например, вычитание числа 4 из 0 операцией, лишенной всякого смысла. В «Мыслях» Паскаля есть выразительное признание: «Я знаю людей, которые никак не могут понять, что если из нуля вычесть четыре, то получится нуль».
70
Любопытно, что открытая Декартом и по сей день сохранившая его имя кривая, описываемая уравнением x 3+ y 3– 3xy = 0,ныне рисуется вовсе не так, как это делал Декарт, считавший, что xи yдолжны быть только положительными; при этом мы по-прежнему называем эту кривую «декартов лист», хотя, если не ограничиваться одними лишь положительными значениями абсциссы и ординаты, рассматриваемая кривая утрачивает форму листа, какую она имела на чертежах Декарта.
Интересный довод против отрицательных чисел выдвинул близкий друг Паскаля теолог и математик Антуан Арно (1612-1697). Арно усомнился в том, что -1:1 = 1:-1. Как может выполняться такое равенство, спрашивал он, если -1 меньше, чем 1? Ведь меньшее число не может относиться к большему так же, как большее к меньшему. Лейбниц, признав правильность возражения Арно, указал, что такого рода пропорции вполне допустимо использовать в вычислениях, ибо по формеони правильны, и сравнил действия, производимые над отрицательными числами, с действиями, производимыми над мнимыми величинами, введенными незадолго до этого. Тем не менее Лейбниц затемнил существо дела, предложив называть мнимыми (несуществующими) все величины, не имеющие логарифма. По мнению Лейбница, число -1 не существует, так как положительные логарифмы соответствуют числам, большим 1, а отрицательные логарифмы (!) соответствуют числам, заключенным между 0 и 1. Следовательно, для отрицательных чисел логарифмов просто «не хватает». Действительно, если бы нашлось какое-нибудь число, соответствующее log(-1), то половина его, как следует из теории логарифмов, соответствовала бы log-1, a -1 заведомо не имеет логарифма.
Одним из первых алгебраистов, умышленно не переносившим отрицательный коэффициент в другую часть уравнения, был Томас Гарриот (1560-1621). Однако он отвергал отрицательные корни и даже «доказал» в своем сочинении «Практические аналитические искусства» ( Artis analyticae praxis,1631), опубликованном уже после его смерти, что отрицательные корни не существуют. Ясные и четкие определения отрицательных чисел дал Рафаэль Бомбелли (XVI в.), хотя ему и не удалось обосновать правила действий над отрицательными числами, поскольку в то время отсутствовала логическая основа, необходимая для обоснования положительных чисел. {71} Стевин рассматривал уравнения с положительными и отрицательными коэффициентами и считал отрицательные корни вполне допустимыми. В своем сочинении «Новое изобретение в алгебре» ( Invention nouvelle en alg`ebre,1629) Альбер Жирар (1595-1632) не проводил никакого различия между отрицательными и положительными числами и указывал оба корня квадратного уравнения, даже если они были отрицательными. И Жирар, и Гарриот употребляли один и тот же знак «минус» для обозначения как операции вычитания, так и отрицательных чисел, хотя следовало бы ввести два отдельных символа, поскольку отрицательное число — независимое понятие, в то время как вычитание — одна из четырех арифметических операций.
71
В этой связи уместно вспомнить строки из У.Г. Одена:
Минус на минус — всегда только плюс. Отчего так бывает, сказать не берусь.В целом можно сказать, что немногие математики XVI-XVII вв. свободно обращались с отрицательными числами или легко восприняли их введение, большинство заведомо не признавали отрицательные числа «настоящими» корнями алгебраических уравнений. По поводу отрицательных чисел среди математиков бытовали самые нелепые предрассудки. Так, Валлис, придерживавшийся прогрессивных для своего времени взглядов и не отвергавший отрицательных чисел, был убежден в том, что отрицательные числа больше, чем бесконечность, и в то же время меньше нуля. В своей «Арифметике бесконечно малых» ( Arithmetica infinitorum,1655) Валлис доказывал, что поскольку отношение a/0при положительном aобращается в бесконечность, то, когда знаменатель становится отрицательным (отношение a/bс отрицательным b), отношение должно стать больше, чем a/0,так как отрицательный знаменатель меньше нуля. Следовательно, заключал Валлис, отрицательные числа должны быть больше, чем бесконечность.
Некоторые из наиболее передовых мыслителей того времени — Бомбелли и Стевин — предложили представление чисел, которое, несомненно, способствовало принятию всей системы вещественных чисел. Бомбелли предположил, что существует взаимно-однозначное соответствие между вещественными числами и длинами отрезков, отложенными на прямой (с заданной единицей длины), и ввел для длин четыре основных действия. По мнению Бомбелли, вещественные числа и производимые над ними арифметические действия определяются длинами отрезков и соответствующими геометрическими операциями. Тем самым Бомбелли рационализировал систему вещественных чисел на геометрической основе. Стевин также рассматривал вещественные числа как длины и считал, что при подобной интерпретации исчезают все трудности, связанные с введением иррациональных чисел. Разумеется, при таком подходе вещественные числа оказались тесно связанными с геометрией.
Так и не преодолев трудностей, связанных с иррациональными и отрицательными числами, европейцы еще более увеличили свое, и без того тяжкое, бремя, когда набрели на новое открытие, значение которого они осознали далеко не сразу, — комплексные числа. Новые числа возникли, когда математики распространили операцию извлечения квадратного корня на любые числа, которые только могут встретиться, например при решении квадратных уравнений. Так, Кардано в гл. 37 своего трактата «Великое искусство» ( Ars magna,1545) поставил и решил следующую задачу: разделить число 10 на две части, произведение которых равно 40. Эта на первый взгляд нелепая задача допускает решение, поскольку, как заметил Д'Аламбер, «алгебра щедра: она нередко дает больше, чем от нее можно было бы требовать». Если x— одна из частей, то по условиям задачи x(10 - x) = 40и мы получаем для xквадратное уравнение.
Решив его, Кардано нашел корни 5 + -15 и 5 - -15, относительно которых заметил, что эти «сложнейшие величины бесполезны, хотя и весьма хитроумны». «Умолчим о нравственных муках» и умножим 5 + -15 на 5 - -15. Произведение этих двух чисел равно 25 - (-15) = 40. По этому поводу Кардано философски заметил: «Арифметические соображения становятся все более неуловимыми, достигая предела столь же утонченного, сколь и бесполезного».
Еще раз Кардано столкнулся с комплексными числами в связи с алгебраическим методом решения кубических уравнений, который он изложил в своей книге. Хотя Кардано искал и отбирал только вещественные корни, выведенная им формула давала и комплексные корни (если уравнение допускало комплексные корни). Небезынтересно отметить, что в том случае, когда все три корня уравнения были вещественными, формула Кардано приводила к комплексным числам, по которым можно было найти вещественные корни. {72} Таким образом, Кардано мог не придавать большого значения комплексным числам, но, поскольку он не знал, как извлекать из комплексных чисел кубический корень и, следовательно, как получать вещественные корни, ему так и не удалось преодолеть эту трудность. Вещественные корни Кардано находил другим способом.
72
Так называемая формула Кардано для корня (точнее, для трех корней) кубического уравнения x 3+ px + q = 0 (найдена она была несколько раньше, но опубликована впервые в «Великом искусстве» Кардано, который, впрочем, и не претендовал здесь на приоритет) имеет вид:
при этом если все три корня уравнения являются вещественными ( неприводимый случайрешения рассматриваемого уравнения), то (q/2) 2+ (p/3) 3 < 0— и правильный ответ можно получить из этой формулы лишь при умении извлекать кубические корни из комплексных чисел (как это сделать, впервые объяснил Р. Бомбелли).