Математика. Утрата определенности.
Шрифт:
Точка зрения на алгебру, утвержденная Пикоком, просуществовала на протяжении большей части XIX в. С небольшими видоизменениями она была принята Дунканом Ф. Грегори (1813-1844), Огастесом де Морганом и немецким математиком Германом Ганкелем (1839-1873).
По существу принцип перманентности форм был произвольным. Естественно, напрашивался вопрос: почему числа различных типов обладают теми же свойствами, что и целые числа? Принцип перманентности форм был санкционирован декретом как эмпирически правильный, но логически не обоснованный. Пикок, Грегори и де Морган, по-видимому, полагали, что алгебре можно придать смысл независимо от свойств вещественных и комплексных чисел. Вряд ли нужно говорить, что если какое-либо правило правой (или левой) руки назвать принципом, то его логическое обоснование от этого не улучшится. Но, как заметил епископ Беркли, «древние и глубоко укоренившиеся предрассудки нередко переходят в принципы, и не только сами утверждения,
Принцип перманентности форм подходит к алгебре как к науке о символах и правилах комбинирования символов. Такому подходу недоставало ни ясности, ни гибкости. Сторонники принципа настаивали на столь жестком параллелизме арифметики и алгебры, что, осуществись он, общности алгебры был бы нанесен серьезный ущерб. По-видимому, этим математикам никогда не приходило в голову, что формула, истинная при одной интерпретации символов, может быть ложной при другой интерпретации тех же символов. Создание кватернионов подорвало самые основы принципа перманентности, потому что умножение кватернионов, ставших первым примером так называемых гиперкомплексных чисел,не обладало коммутативным свойством (гл. IV). А это означало, что буквенные символы, принимающие кватернионные значения, не обладают всеми свойствами вещественных и комплексных чисел: математики обнаружили «гиперчисла», свойства которых разнятся от свойств известных им ранее чисел. Тем самым принцип перманентности был низложен. Пикок и его последователи не учли, что вскоре (после открытия кватернионов) стало очевидным: существует не одна-единственная алгебра, а много разных алгебр и алгебру вещественных и комплексных чисел можно обосновать, лишь доказав, что буквенные символы, принимающие вещественные или комплексные значения, обладают всеми свойствами, которые приписываются этим буквенным символам.
В начале XIX в. «логический туман» окутывал не только алгебру, но и анализ. Предложенное Лагранжем обоснование математического анализа (гл. VI) удовлетворяло не всех математиков, и некоторые из них вновь встали на позицию Беркли и других критиков, считавших, что благополучие в этой области обеспечивается лишь за счет того, что ошибки взаимно компенсируются. Такого же мнения придерживался и Лазар Карно в своих «Размышлениях о метафизике исчисления бесконечно малых»: его метафизика «объясняла», что одни ошибки компенсируют другие. После длительного обсуждения различных подходов к математическому анализу Карно приходит к выводу, что, хотя все эти методы, равно как и введенное Д'Аламбером понятие предела, в действительности эквивалентны греческому методу исчерпывания, бесконечно малые позволяют быстрее получать результат. Карно внес свою лепту в разъяснение и уточнение понятий анализа, но вклад его не был особенно велик. Кроме того, сопоставляя идеи Ньютона, Лейбница и Д'Аламбера с греческим методом исчерпывания, он сделал явно рискованный шаг: ведь в греческой геометрии и алгебре не существовало общего понятия производной.
Грубые ошибки в области математического анализа были, увы, нередки у математиков XIX в. Можно было бы привести немало примеров этого, но мы ограничимся одной-двумя иллюстрациями. В основе всего математического анализа лежат понятия непрерывной функциии производнойот функции. Чисто интуитивно, непрерывная функция — это такая кривая, которую можно начертить одним росчерком пера, не отрывая его от бумаги (рис. 7.1). Геометрический смысл производной к такой функции — тангенс угла наклона касательной, проведенной к кривой в точке P.Казалось бы, очевидно, что непрерывная функция должна иметь касательную в каждойточке. Однако некоторые математики XIX в. сумели подняться над интуитивными представлениями и вознамерились доказать все, что возможно, чисто логическим путем.
Рис. 7.1.График непрерывной функции.
К сожалению, непрерывная функция с точками излома не имеет в них производной (функция, изображенная на рис. 7.2, не имеет производной в точках излома A, Bи C).
Рис. 7.2.Непрерывная, но не дифференцируемая (в точках A, Bи C) функция.
Тем не менее Андре Мари Ампер (1775-1836) «доказал» в 1806 г., что любая функция имеет производную во всех точках, где она непрерывна. Другие
82
Современное определение функции как любого правила или закона, сопоставляющего каждому значению xиз области X(определения функции) единственное число y— значение функции в «точке» x, было еще в 1817 г. предложено чешским математиком Бернардом Больцано (1781-1848), однако замечено оно было только после повторения его в 40-х годах XIX в. авторитетным немецким математикой Петером Густавом Дирихле (1805-1859). Раньше Дирихле определение «по Больцано» использовал в своих работах по математическому анализу Н.И. Лобачевский, что, однако, тоже никем не было замечено.
Если вспомнить, что непрерывность и дифференцируемость два основных понятия математического анализа и что основной областью математики с середины XVII в. и, пожалуй, вплоть до настоящего времени являлся именно математический анализ, то нельзя не ужаснуться неясности и неопределенности этих фундаментальных понятий. Ошибки в рассуждениях и даже ошибочные заключения в вопросах, связанных с непрерывностью и дифференцируемостью, зачастую были столь значительны, что сегодня они считались бы непростительными даже для студентов младших курсов, — а ведь их совершали знаменитейшие математики: Фурье, Коши, Галуа, Лежандр, Гаусс, а также другие ведущие математики того времени, хотя и более низкого ранга.
Принятые в XIX в. учебники математического анализа по-прежнему свободно оперировали такими терминами, как дифференциалили бесконечно малая величина,которые все еще оставались неясными или противоречивыми: они вроде бы одновременно и равнялись нулю, и были отличны от нуля. Это не могло не озадачивать тех, кто только начинал изучать математический анализ. Единственно, что им оставалось делать, — это следовать совету Д'Аламбера: «Будьте настойчивы, и вера к вам придет». Бертран Рассел, учившийся в 1890-1894 гг. в Тринити-колледже Кембриджского университета, вспоминал в своей автобиографической книге «Мое философское развитие»: «Те, кто преподавал мне дифференциальное исчисление, не знали правильных доказательств основных теорем и пытались заставить меня принять официальную софистику как акт веры».
Логические трудности, вставшие перед математиками XVII-XIX вв., достигли наибольшей остроты в таких разделах математического анализа, как дифференциальное и интегральное исчисление, а также теория бесконечных рядов и дифференциальных уравнений. Но в начале XIX в. излюбленной областью исследования математиков вновь стала геометрия. Евклидова геометрия расширилась. Новую область геометрии, так называемую проективную геометрию(занимавшуюся изучением тех свойств фигуры, которые сохраняются при ее проектировании, подобном, скажем, проектированию реальной трехмерной сцены на кинопленку, осуществляемому объективом кинокамеры), впервые подробно рассмотрел Жан Виктор Понселе (1788-1867). Как можно было ожидать, исходя из предшествующей истории математики, Понселе и другие геометры благоговейно относились к многим теоремам, доказывая которые они столкнулись с бесчисленными трудностями. К тому времени, благодаря главным образом работам Декарта и Ферма (XVII в.), уже возникли алгебраические методы доказательства геометрических теорем; однако геометры первой половины XIX в. считали алгебраические методы чуждыми геометрии, геометрической интуиции и всему, что составляет дух «истинно геометрического» исследования.
Чтобы «доказать» свои теоремы чисто геометрическими методами, Понселе широко использовал принцип непрерывности.В своем «Трактате о проективных свойствах фигур» (1822) он сформулировал этот принцип следующим образом: «Если одна фигура получается из другой непрерывным преобразованием и полученная фигура не уступает по общности исходной, то можно сразу же утверждать, что любое свойство первой фигуры будет справедливо и для второй фигуры». Никаких пояснений по поводу того, в каких случаях конечную фигуру можно считать не уступающей по общности исходной фигуре, Понселе не дает.