Чтение онлайн

на главную - закладки

Жанры

Математики, шпионы и хакеры. Кодирование и криптография
Шрифт:

Первый шифр, предназначенный для того, чтобы воспользоваться потенциалом компьютеров, был разработан в 1970-х гг. Например, «Люцифер», шифр, который разделял текст на блоки по 64 бита и зашифровывал некоторые из них с помощью сложной подстановки, а затем группировал их снова в новый блок зашифрованных битов и повторял процесс. Для работы такой системы было необходимо, чтобы отправитель и получатель имели компьютеры с одной и той же программой шифрования, а также общий цифровой ключ. 56-битная версия шифра «Люцифер», названная DES, была разработана в 1976 г. DES (Data Encryption Standard — «стандарт шифрования данных») по-прежнему используется в наши дни, хотя этот шифр был взломан в 1999 г. и заменен 128-битным AES (Advanced Encryption Standard) в 2002 г.

Без сомнения, такие алгоритмы шифрования

сполна использовали вычислительную мощность компьютеров, но, как и их предшественники тысячелетней давности, компьютерные шифры по-прежнему были уязвимы, поскольку несанкционированный получатель мог перехватить ключ и, зная алгоритм шифрования, расшифровать сообщение. Этот основной недостаток каждой «классической» криптографической системы известен как проблема распределения ключей.

Проблема распределения ключей

Всем известно, что для обеспечения безопасности кода ключи шифрования должны быть защищены надежнее, чем алгоритм. Тогда возникает проблема: как безопасно распределять ключи. Даже в простых случаях это является серьезной проблемой логистики, например, как распределить тысячи шифровальных книг среди радистов большой армии, или как доставить книги в мобильные центры связи, работающие в экстремальных условиях, такие как станции на подводных лодках или штабы на линии фронта. Какой бы сложной ни была классическая система шифрования, она остается уязвимой, так как соответствующие ключи могут быть перехвачены.

Алгоритм Диффи — Хеллмана

Сама концепция безопасного обмена ключами может показаться противоречивой: как вы можете послать ключ в виде сообщения, которое уже как-то зашифровано?

Ключом, переданным заранее обычным способом? Однако, если ключами действительно несколько раз обменивались, то решение проблемы можно себе представить — по крайней мере, на теоретическом уровне.

Предположим, что отправитель по имени Джеймс шифрует сообщение с помощью своего ключа и посылает результат получателю по имени Питер, который повторно шифрует зашифрованное послание своим ключом и возвращает его отправителю. Джеймс расшифровывает сообщение своим ключом и посылает назад результат, т. е. текст, в данный момент зашифрованный только ключом Питера, который его расшифровывает. Казалось бы, вековая проблема безопасного обмена ключами решена! Неужели это правда? К сожалению, нет. В любом сложном алгоритме шифрования порядок применения ключей имеет решающее значение, а в нашем примере мы видим, что Джеймс расшифровывает сообщение, которое уже зашифровано другим ключом. Когда порядок ключей меняется, результат будет абракадаброй. Вышеизложенный пример не объясняет теории подробно, но он дает подсказку к решению проблемы. В 1976 г. два молодых американских ученых, Уитфилд Диффи и Мартин Хеллман, нашли способ, при котором два человека могут обмениваться зашифрованными сообщениями без всякого обмена секретными ключами. Этот метод использует модульную арифметику, а также свойства простых чисел. Идея заключается в следующем.

* * *

АВТОРЫ АЛГОРИТМА

Уитфилд Диффи родился в 1944 г. в Соединенных Штатах. Получив степень бакалавра математики в Массачусетском технологическом институте (МП), он с 2002 по 2009 гг. работал главой службы безопасности и вице-президентом компании Sun Microsystems (в Калифорнии).

Инженер Мартин Хеллман родился в 1945 г. и работал в IBM и Массачусетском технологическом институте, где сотрудничал с Диффи.

Уитфилд Диффи

* * *

1. Джеймс выбирает число, которое он держит в секрете. Мы обозначим это число Nj1

2. Питер выбирает другое случайное число, которое он тоже держит в секрете. Мы обозначим это число Np1

3. Затем и Джеймс, и Питер применяют к своим числам функцию вида f(x) = ах (mod р) где р — простое число, известное им обоим.

• После этой операции Джеймс получает новое число, Nj2, которое он посылает Питеру.

• А Питер посылает Джеймсу свое новое число Np2

4. Джеймс вычисляет NNj1p2 (mod р) и получает новое число Сj.

5. Питер вычисляет NNp1j2 (mod р) и получает новое число Ср.

Хотя это кажется невозможным, но числа Сj и Ср являются одинаковыми. И теперь у нас есть ключ. Заметим, что Джеймс и Питер обменивались информацией только тогда, когда они выбрали функцию f(x) = ах (mod р) и послали друг другу числа Nj2 и Np2. Ни то, ни другое не является ключом, поэтому перехват этой информации не будет угрожать безопасности системы шифрования. Ключ этой системы имеет следующий вид:

aNj1•Np1  (mod p).

Важно также учесть, что данная функция имеет одну особенность: она необратима, то есть зная саму функцию и результат ее применения к переменной х, невозможно (или, по крайней мере, очень сложно) найти исходное значение х.

Далее, чтобы пояснить идею, мы повторим процесс с конкретными значениями.

Возьмем следующую функцию:

f(x) = 7х (mod 11).

1. Джеймс выбирает число, NJ1 например, 3, и подставляет в функцию f(3) = 7 

2 (mod 11).

2. Питер выбирает число, Np1 например, 6, и подставляет в функцию f(6) = 76 

4 (mod 11).

3. Джеймс посылает Питеру свой результат, 2, а Питер Джеймсу — свой, 4.

4. Джеймс считает 43 

9 (mod 11).

5. Питер считает 26 

9 (mod 11).

Это число, 9, и будет ключом системы.

Джеймс и Питер обменялись функцией f(х) и числами 2 и 4. Будет ли эта информация полезна злоумышленнику? Допустим, злоумышленник знает и функцию, и числа. Тогда он должен найти Nj1 и Np1 по модулю 11, где Nj1и Np1 — такие числа, которые и Джеймс, и Питер держат в секрете даже друг от друга. Если шпиону удастся узнать эти числа, он получит ключ, лишь вычислив aNj1•Np1  по модулю р. Решение уравнения вида у = ах, кстати, в математике называется дискретным логарифмом.

Поделиться:
Популярные книги

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Физрук: назад в СССР

Гуров Валерий Александрович
1. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук: назад в СССР

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Заход. Солнцев. Книга XII

Скабер Артемий
12. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Заход. Солнцев. Книга XII

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить