Математики, шпионы и хакеры. Кодирование и криптография
Шрифт:
Когда два алфавита, оригинальный (или алфавит открытого сообщения) и шифроалфавит, расположены таким образом, шифрование любого сообщения сводится к замене букв из первого алфавита буквами из второго. Ключ к такому шифру получает название по букве, соответствующей зашифрованному значению буквы А (первой буквы оригинального алфавита). В нашем случае это буква D. Известное выражение AVE CAESAR («Радуйся, Цезарь») будет зашифровано как DYH FDHVDU. Обратно, если зашифрованное сообщение выглядит как WUHH, то расшифрованный текст будет TREE («Дерево»). В случае с только что описанным шифром Цезаря криптоаналитик, который перехватил сообщение и знает используемый алгоритм, но не знает ключ к шифру, должен будет перебрать все возможные сдвиги алфавита, пока не найдет сообщение, имеющее смысл. Для этого он должен будет, в худшем случае, попробовать все возможные
* * *
ШИФРЫ В ФИЛЬМАХ
В классическом научно-фантастическом фильме режиссера Стэнли Кубрика по мотивам повести Артура Кларка «Космическая одиссея 2001 года» (1968) наделенный сознанием суперкомпьютер космического корабля HAL 9000 сходит с ума и пытается убить человеческий экипаж.
Теперь предположим, что слово HAL закодировано шифром Цезаря со сдвигом на одну позицию. Тогда буква Н соответствует букве I, А соответствует В, a L — букве М; другими словами, получается IBM, в то время крупнейший в мире производитель компьютеров. О чем пытался рассказать этот фильм: об опасностях искусственного интеллекта или об угрозах бесконтрольной коммерческой монополии? Или это просто совпадение?
Всевидящий глаз компьютера HAL 9000 из фильма «Космическая одиссея 2001 года»
16 = 4. Модульная арифметика и математика шифра Цезаря
16 = 4? 2 = 14? Это не ошибка и не какая-то странная система счисления. Работа шифра Цезаря может быть проиллюстрирована теорией, которая привычна для математики и в еще большей степени для криптографии — модульной арифметикой, иногда называемой часовой арифметикой. Эта теория появилась еще в работах греческого математика Евклида (325–265 гг. до н. э.) и является одной из основ современной информационной безопасности. В этом параграфе мы расскажем о базовых математических понятиях, связанных с этим особым типом арифметики.
Возьмите в качестве примера обычные часы со стрелками и сравните их с цифровыми часами. На часах со стрелками циферблат разделен на 12 частей, которые мы обозначим числами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, И. В следующей таблице можно видеть, как время на аналоговом циферблате соответствует времени после полудня на экране цифровых часов.
Когда мы говорим, например, что сейчас 14:00, мы можем также сказать, что сейчас два часа дня. Тот же принцип применяется и в случае измерения углов. Угол в 370 градусов равен углу в 10 градусов, потому что от первого значения мы должны вычесть полный оборот в 360 градусов. Заметим, что 370 = (1 х 360) + 10, то есть 10 является остатком от деления 370 на 360. Какой угол эквивалентен углу в 750 градусов? Вычитая соответствующее количество полных оборотов, мы получим, что угол в 750 градусов равен углу в 30 градусов. Мы видим, что 750 = (2 х 360) + 30, то есть 30 является остатком от деления 750 на 360. В математике это обозначается так:
750
Мы говорим: «750 сравнимо с 30 по модулю 360». В случае с часами мы бы написали
14
Мы также можем представить себе часы с отрицательными числами. В этом случае который будет час, когда стрелка показывает на —7? Или, другими словами, с каким числом сравнимо число —7 по модулю 12? Давайте посчитаем, учитывая, что на наших часах с циферблатом, разделенным на 12 частей, значение 0 соответствует 12.
— 7 = —7 + 0 = —7 + 12 = 5.
* * *
ОТЕЦ АНАЛИТИЧЕСКОЙ КРИПТОГРАФИИ
Основная работа Евклида Александрийского, «Начала», состоит из 13 томов, в которых излагаются основные факты планиметрии, теории пропорций, свойства чисел, сведения об иррациональных числах и стереометрии. Чаще всего ассоциируемые с этой последней теорией, работы греческого математика, связанные с арифметическими операциями на конечных числовых множествах, или операциями по модулю, являются одним из столпов современной теории криптографии. Известные и почитаемые еще арабскими учеными, работы Евклида впервые были изданы в Венеции в 1482 г. Вовсе не случайно, что и арабы, и венецианцы были великими мастерами криптографии.
* * *
ОПЕРАЦИИ ПО МОДУЛЮ
Как посчитать 231 по модулю 17 на калькуляторе?
Сначала мы разделим 231 на 17 и получим 13,58823529.
Затем найдем произведение 13 x 17 = 221. Таким образом
Наконец, найдем разность 231–221 = 10, получив остаток отделения.
Итак, 231 по модулю 17 равно 10. Этот результат записывается как 231
* * *
Математика для расчетов на наших часах со стрелками, циферблат которых разделен на 12 частей, называется арифметикой по модулю 12. В общем случае мы говорим, что a
a
b
а — b 0 (mod m)
а — b кратно m
Вопрос «Которому часу на часах со стрелками соответствует время 19 часов?» эквивалентен в математических терминах следующему вопросу: «С каким числом сравнимо число 19 по модулю 12?» Чтобы ответить на этот вопрос, мы должны решить уравнение
19
Разделив 19 на 12, мы получим частное 1 и остаток 7, поэтому
19
А в случае 127 часов? Разделив 127 на 12, мы получим частное 10 и остаток 7, поэтому
127
Чтобы повторить изученное до сих пор, давайте рассмотрим следующие операции по модулю 7:
(1) 3 + 3
(2) 3 + 14
(3) 3 х 3 = 9
(4) 5 x 4 = 20
(5) 7
(6) 35
(7) -44 = -44 + 0 = -44 + 7 х 7
(8) -33 = -33 + 0 = -33 + 5 x 7
(1) 6 меньше, чем модуль, поэтому не меняется
(2) 3 + 14 = 17; 17: 7 = 2 и в остатке 3.
(3) 3 X 3 = 9; 9: 7 = 1 и в остатке 2.
(4) 5 х 4 = 20; 20: 7 = 2 и в остатке 6.
(5) 7 = 7; 7: 7 = 1 и в остатке 0.
(6) 35 = 35; 35: 7 = 5 и в остатке 0.
(7) -44 = -44 + 0; 44 + 7 х 7
(8) -33 = -33 + 0; -33 + 5 x 7
* * *
ТАБЛИЦА УМНОЖЕНИЯ ПО МОДУЛЮ 5 В EXCEL
Построить такую и подобные таблицы очень легко даже с базовыми знаниями офисной программы Excel. В нашем случае синтаксис функций для ячеек Excel (для столбцов и строк на нашем компьютере) показан ниже. Действие «остаток отделения числа на 5» переводится на язык Excel как «=ОСТАТ(число;5)». Конкретная операция по нахождению произведения 4 на 3 по модулю 5 записывается как «=ОСТАТ (4•3;5)» и дает результат 2. Подобные таблицы очень помогают в расчетах по модульной арифметике.