Чтение онлайн

на главную

Жанры

Мечта об идеальной карте. Картография и математика
Шрифт:

Как влияет это уменьшение в размерах на метрические параметры карт, о которых мы говорили выше? Расстояния и длины кривых уменьшаются линейно в соответствии с масштабом, то есть каждый сантиметр глобуса соответствует 254,84 км земной поверхности. Следовательно, если мы хотим измерить расстояние от Барселоны до Аделаиды, нужно всего лишь измерить это расстояние на сферической модели Земли и умножить результат в сантиметрах на 254,84. Площади участков земной поверхности и масштаб карты связаны квадратичной зависимостью: каждый квадратный сантиметр на глобусе будет соответствовать 254,842 = 64943,4256 км2.

Большие круги, указывающие кратчайшие пути, станут большими кругами на сферической модели, поэтому геодезические линии также останутся неизменными. Сохранятся также углы и направления. Как видим,

преобразование, которое заключается в уменьшении размеров Земли, не изменяет метрические параметры, масштаб во всех точках сферической модели остается постоянным.

Математически это можно выразить следующим образом. Будем считать, что Земля и ее сферическая модель имеют общий центр, который мы примем за начало нашего трехмерного пространства

. Следовательно, наше математическое преобразование будет отображением Земли (S1), которая является сферой радиуса 6371 км, на сферическую модель (S2) радиусом 25 см : S1 —> S2, определяемым как (х) = е·х. На языке геометрии это отображение называется гомотетией (при е > 1 исходные фигуры увеличиваются, при е < 1, как в нашем случае, — уменьшаются). Это простое преобразование, которое однозначно определяется свойством пропорционального уменьшения размеров фигур.

Теперь, когда вопрос об изменении размеров решен, осталось решить проблему изменения формы. Как вы увидите, она намного сложнее, и именно здесь в действительности скрывается святой Грааль картографии — идеальная карта. Чтобы решить эту проблему, нужно изучить математические проекции сферы на плоскость и рассмотреть, как они изменяют различные метрические свойства. Это центральная тема математической картографии и настоящей главы. Как мы упоминали в предисловии, существует множество математических преобразований сферы в плоскость и, как следствие, множество разных проекций, на основе которых можно составить столь же большое число самых разных карт. Далее для простоты мы будем понимать картографические проекции как отображения сферы единичного радиуса на плоскость 

Кроме того, с математической точки зрения проекции должны обладать некоторыми естественными свойствами: в частности, они должны быть непрерывными и дифференцируемыми. Это означает, что сфера должна проецироваться на плоскость разумным образом, то есть без складок, разрезов и наложений.

Как мы уже отмечали, важно знать, как изменяются основные метрические свойства при использовании тех или иных проекций. Поэтому начнем наши поиски точной карты земной сферы с того, что докажем следующее утверждение: в проекции, сохраняющей расстояния между точками (такие отображения называются изометрическими), также сохраняются кратчайшие пути (геодезические линии), углы и площади. Кроме того, сохранение расстояний эквивалентно сохранению длин кривых. Предыдущие утверждения — не более чем частный случай анализа дифференцируемых отображений между регулярными поверхностями применительно к их метрическим свойствам (доказательство этого утверждения методами дифференциальной геометрии можно найти в любом классическом учебнике по этой дисциплине).

Проекция, сохраняющая расстояния, сохраняет и кратчайшие пути

Далее мы докажем, что любая проекция сферы на плоскость, сохраняющая расстояния (это означает, что расстояние между двумя произвольными точками сферы будет равно расстоянию между отображениями этих точек на плоскости), также сохраняет кратчайшие пути, иными словами, отображением больших кругов сферы будут прямые на плоскости.

Докажем это утверждение методом от противного, который заключается в том, что мы считаем утверждение, которое хотим доказать, ложным, и путем логических рассуждений приходим к противоречию, затрагивающему исходную гипотезу. Следовательно,

утверждение, которое мы хотим доказать, будет истинным. В нашем случае предположим, что проекцией больших кругов не всегда будет прямая.

Если бы рассматриваемая проекция в самом деле не сохраняла кратчайшие пути, то существовали бы две точки сферы А и В и точка С, лежащая на кратчайшем пути между ними (то есть на большом круге, проходящем через А и В), такая, что ее отображение на плоскость С' не лежало бы на кратчайшем пути (прямой), соединяющем отображения точек А и В — А' и В' соответственно.

Имеем: так как рассматриваемая проекция сохраняет расстояния, то расстояние между отображениями А' и В' равно расстоянию между исходными точками А и В:

d(A, B) = d(A', B').

Так как точка С лежит на кратчайшем пути между А и В, расстояние между этими точками будет равно сумме расстояний между А и С и между С и В:

d(A, B) = d(A, C) + d(C, B).

Тем не менее точка С не лежит на прямой, соединяющей А' и В', следовательно:

d(A', B') < d(A', C') + d(C', B').

Но так как рассматриваемая проекция сохраняет расстояния, то последняя сумма будет равна d(A, С) + d(С, В). Имеем противоречие: мы доказали, что

d(A, B) < d(A, B).

Это очевидно ложное утверждение означает, что проекция не сохраняет кратчайшие пути.

Сохранение расстояний в проекции означает сохранение длин кривых

Используем утверждение из предыдущего раздела (проекции, сохраняющие расстояния, сохраняют и кратчайшие пути), чтобы доказать, что в этом случае кривые на сфере преобразуются в кривые на плоскости, имеющие ту же длину. Почему это утверждение верно? Во-первых, любую кривую на сфере можно приближенно представить в виде конечного (но достаточно большого) числа дуг больших кругов. Концы этих дуг р0, р1, р2, …, рn-1, pn лежат на кривой, как показано на иллюстрации.

Следовательно, длину кривой можно приближенно представить как сумму длин этих дуг, или, иными словами, как сумму расстояний между их концами. Так как речь идет о дугах больших кругов, это будут кратчайшие расстояния, соединяющие концы дуг:

l = d(р0, р1) + d(р1, p2) + …+ d(рn-1, рn).

Поделиться:
Популярные книги

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Последний рейд

Сай Ярослав
5. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Последний рейд

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Серые сутки

Сай Ярослав
4. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Серые сутки

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III