Мечта об идеальной карте. Картография и математика
Шрифт:
Карта, выполненная в проекции Моллвейде (1805). Это алгоритмическая проекция — она описывается чисто математическими выражениями. Она является равновеликой, в ней используется эллипс с соотношением длин осей 2:1. Параллели в этой проекции изображаются параллельными линиями.
ОРТОФОТОГРАФИЯ
При составлении небольших культурных или туристических карт городов очень часто используется ортофотография. При взгляде на ортофотографии большинство людей думают, что эти фото сделаны с самолета или спутника, то есть представляют собой карту в вертикальной перспективной проекции. Но это не совсем так. Ортофотография — это фотографическое
Ортофотография города Саламанка
(источник: SIGPAC).
Глава 5
Проекция Архимеда, или равновеликая цилиндрическая проекция Ламберта
Главным школьным учебником была Энциклопедия Альвареса для первого, второго и третьего классов вместе с книгами для чтения. Там же были три прогрессивные азбуки и альбом для рисования. Вместе с ними были две книги по Священной Истории для первого и второго классов, а также некоторые атласы Испании и Европы. Стены были украшены картами мира.
Поодаль стоял шкаф, из которого в любой момент можно было извлечь глобус, карты, книги по геометрии, иллюстрации по естественным наукам, человеческий скелет и так далее.
Эухенио Фернандес Риоль «История лошади и ее юного хозяина» (2005)
Равновеликая цилиндрическая проекция Ламберта, также называемая проекцией Архимеда (возможно, она была уже известна этому греческому математику), — одна из семи проекций, предложенных математиком Иоганном Генрихом Ламбертом в книге «Примечания и комментарии о составлении земных и небесных карт» (1772). Возможно, эта книга стала первым математическим трудом, в котором были подробно исследованы картографические проекции с применением нового метода — математического анализа. В ней были представлены следующие проекции (перечислим их под современными названиями в том же порядке, что и в книге Ламберта).
1. Равноугольная коническая проекция Ламберта.
2. Проекция Лагранжа.
3. Поперечная проекция Меркатора.
4. Равновеликая цилиндрическая проекция Ламберта.
5. Равновеликая цилиндрическая поперечная проекция.
6. Равновеликая азимутальная проекция Ламберта.
7. Равновеликая коническая проекция Ламберта.
Проекции номер 1, 3 и 6 используются в последнем столетии наиболее часто. Хотя равновеликая цилиндрическая проекция Ламберта не представляет особого интереса в картографии, на ее основе созданы другие, более популярные проекции.
Важность проекции Ламберта обусловлена скорее ее простотой и множеством геометрических свойств, поэтому именно она чаще всего используется в книгах по картографии в качестве примера равновеликой проекции.
Равновеликая цилиндрическая проекция Ламберта при проецировании сферы на касающийся ее цилиндр определяется так: проекция любой точки сферы А — это точка цилиндра А' такая, что она является точкой пересечения поверхности цилиндра с прямой, проходящей через точку А и перпендикулярной оси цилиндра, как показано на рисунке. Эта проекция, очевидно, является геометрической, а Землю мы представляем как полупрозрачный пластиковый шар. Проекция земной поверхности на поверхность цилиндра образуется, если мы поместим источник света вдоль всей оси цилиндра, окружив ее линзой, которая пропускает только лучи света в горизонтальной плоскости, то есть перпендикулярно оси цилиндра.
В равновеликой цилиндрической проекции Ламберта точки земной сферы горизонтально проецируются на поверхность цилиндра, касающегося сферы. Затем цилиндр разрезается по меридиану и разворачивается на плоскости.
* * *
ИОГАНН
Иоганн Генрих Ламберт родился в немецком городе Мюльхаузен в провинции Эльзас (в настоящее время — Мюлуз, Франция), куда члены его семьи переехали по религиозным причинам: они были кальвинистами. В 12 лет Ламберту пришлось оставить школу и помогать отцу-портному, но в свободное время Ламберт продолжал учиться самостоятельно. Позднее он работал клерком в сталелитейной мастерской, а в 1746 году занял должность частного секретаря швейцарского философа Исаака Изелина (1728–1782) в Базеле. Двумя годами позже он стал преподавателем в доме графа Питера фон Салиса в Куре. В этой должности у него оставалось достаточно свободного времени, чтобы заниматься математикой, астрономией и философией, а также пользоваться книгами из превосходной графской библиотеки.
Ламберт был исключительным математиком: он доказал иррациональность числа и предположил, что числа е и трансцендентны, то есть их нельзя представить как корни многочлена с целыми коэффициентами. Он одним из первых изучил проблему, связанную с пятым постулатом Евклида. Ламберт предположил, что пятый постулат ложен, и получил результаты, относящиеся к неевклидовой геометрии. Он занимался гиперболическими функциями, проводил важные исследования в сферической геометрии, картографии и науке о перспективе, а также совершил важные открытия в теории вероятностей. Интересы Ламберта не ограничивались исключительно математикой: он также был автором важных работ по физике, астрономии и философии.
* * *
Если мы примем радиус земной сферы равным единице и будем считать, что цилиндр касается ее в точках, лежащих на экваторе, то ось цилиндра будет проходить через Северный и Южный полюса. После построения проекции сферы на поверхность цилиндра он разрезается по меридиану и разворачивается на плоскости. Эта развертка цилиндра на плоскости является изометрической и сохраняет все интересующие нас метрические свойства. Первую карту мира в этой проекции составил Иоганн Генрих Ламберт в 1772 году.
Карта, выполненная в равновеликой цилиндрической проекции Ламберта (1772).
Далее перечислены некоторые свойства карты, выполненной в равновеликой цилиндрической проекции Ламберта.
1. Она имеет прямоугольную форму, как и все карты, выполненные в цилиндрических проекциях.
2. Меридианы и параллели отображаются как прямые, они имеют равную длину (но не равны между собой) и перпендикулярны друг другу.
3. Меридианы распределены равномерно вследствие того, что масштаб во всех точках каждой параллели постоянен, однако масштабы на разных параллелях отличаются. Параллели распределены неравномерно и сближаются друг с другом по мере приближения к полюсам.
4. Так как проекция является равновеликой, она сохраняет площади (с учетом коэффициента масштаба поверхности). Этот коэффициент возникает при уменьшении размеров земной сферы (то есть при гомотетии) и постоянен во всех точках карты. Однако величины углов и геодезические линии не сохраняются.
3. Искажение форм, углов и расстояний вблизи экватора очень мало и растет по мере приближения к полюсам.
Вернемся к основному вопросу этой главы — как изменяются площади, углы и геодезические линии в равновеликой цилиндрической проекции Ламберта? Чтобы доказать, что эта проекция сохраняет площади, достаточно показать, что она сохраняет площади «прямоугольных» (достаточно малых, то есть бесконечно малых) участков, сторонами которых являются меридианы и параллели.
Как показано на следующем рисунке, для данной точки сферы на широте отображением меридиана (достаточно малого) длины l будет отрезок прямой на поверхности цилиндра длиной l' = l·cos , а отображением параллели (достаточно малой) длины k будет дуга окружности на поверхности цилиндра, длина которой будет равна k' = k/cos . Следовательно, бесконечно малый «прямоугольник» с основанием k и высотой l на поверхности сферы, площадь которого равна l·k, преобразуется в «прямоугольник» с основанием k' = k/cos и высотой l' = l·cos . Площадь полученного прямоугольника также будет равна l·k. Как следствие, проекция Архимеда сохраняет площади неизменными.