Мечта об идеальной карте. Картография и математика
Шрифт:
В зависимости от того, какая вспомогательная поверхность используется в проекции: плоскость, цилиндр или конус — геометрические проекции делятся на азимутальные, цилиндрические (о них мы рассказали в прошлой главе) и конические. Использование цилиндра и конуса обусловлено тем, что эти поверхности являются развертывающимися, то есть их можно развернуть на плоской поверхности без изменения метрических свойств.
< image l:href="#"/>Проекции делятся на азимутальные, цилиндрические и конические в зависимости от того, какая поверхность используется в качестве вспомогательной:
Помимо этих основных поверхностей, могут использовать и другие, необязательно развертывающиеся: так, в проекции «броненосец» (Эрвин Райш, 1943) сфера проецируется на поверхность тора (напомним, что тор — поверхность в форме бублика), после чего строится ее ортогональная проекция на плоскость.
Хотя алгоритмические проекции описываются математическими формулами и не имеют геометрической интерпретации, они, как правило, также делятся на азимутальные, цилиндрические и конические в зависимости от своих свойств.
Но вернемся к азимутальным проекциям. Живительно, что они не называются просто «планарными» или «плоскими». Откуда взялось слово «азимутальный»?
Для данной точки А земной поверхности и других двух точек, В и С, азимут, взятый из точки В на точку С, — это угол, образованный кривыми наименьшей длины, соединяющими точки А и В и А и С. Этими кривыми наименьшей длины, как известно, будут дуги больших кругов сферы. Иными словами, азимут — это угол, на который наблюдатель, находящийся в точке А и смотрящий в точку В, должен повернуться, чтобы увидеть точку С, как показано на рисунке.
Понятие азимута возникло в астрономии и навигации и обозначает угол, или длину дуги математического горизонта, измеренный от точки севера (или точки юга) до вертикальной проекции небесного тела на горизонт наблюдателя. Следовательно, по своей сути азимутальные проекции — это проекции, сохраняющие азимут, взятый из фиксированной точки отсчета, которой является центр карты. Как следствие, эти проекции сохраняют направления до других произвольных точек, но необязательно сохраняют расстояния. Проекции, которые мы хотели назвать «планарными», называются азимутальными потому, что получаются путем прямой проекции на касательную плоскость земного шара (также можно рассмотреть вариант с секущей плоскостью).
Все азимутальные проекции, центры которых совпадают с Северным или Южным полюсом, обладают следующими свойствами.
1. Меридианы изображаются равномерно распределенными прямыми (если рассматривается сетка меридианов, отстоящих друг от друга на равные углы), проходящими через центр карты.
2. Параллели изображаются концентрическими окружностями с центром в точке касания. Следовательно, различные азимутальные проекции определяются тем, как распределяются окружности параллелей.
Сравнение расположения параллелей в полярных разновидностях различных азимутальных проекций.
В этой проекции радиальные прямые, исходящие из центра карты, являются отображениями дуг больших кругов, проходящих через точку касания земного шара и плоскости. Однако в общем случае расстояния от этой точки не сохраняются (за исключением
* * *
КАРТЫ ДЛЯ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЙ НА МЕККУ
Мусульмане должны молиться пять раз в день, обратившись в сторону Каабы — священного куба, расположенного в Мекке и символизирующего дом Бога. Мечети также должны располагаться соответствующим образом. Но как мусульманин или строитель мечети в любой точке мира может узнать, в каком направлении находится Мекка? Можно построить карту в стереографической проекции, в центре которой будет изображена Мекка. Так как эта проекция является азимутальной и конформной, на карте можно будет провести прямую между мечетью и Меккой, затем вычислить угол между этой прямой и меридианом. До начала молитвы мусульманин должен будет встать лицом к северу, а затем повернуться на этот угол. Один из недостатков карты заключается в том, что меридианы изображены кривыми линиями, а это усложняет вычисление угла.
Возможен и другой вариант: можно рассмотреть ретроазимутальные проекции, то есть проекции, сохраняющие направление из любой точки Земли в фиксированную точку (но не наоборот, как в случае с азимутальными проекциями). В ретроазимутальной проекции, предложенной британским картографом Джеймсом Крейгом в 1910 году, меридианы изображаются параллельными равномерно распределенными прямыми. Карта в этой проекции, в центре которой будет изображена Мекка, прекрасно подойдет для определения киблы — направления на Мекку.
* * *
Искажения, вызываемые этим классом проекций (искажения геодезических линий, площадей, углов и форм), вблизи точки касания (или вблизи круга, образованного сечением сферы плоскостью) малы и увеличиваются по мере удаления от нее. При этом изображение близко к виду Земли из космоса. Классические геометрические проекции этого класса — ортографическая, гномоническая и стереографическая проекции. Другими, более сложными, являются азимутальная равнопромежуточная и равновеликая азимутальная проекция Ламберта. Такие карты используются в океанографии, на кораблях дальнего плавания, в туризме и в военном деле, так как в их центре изображается конкретное место, а геодезические линии, проходящие через него, сохраняются. Искажения на этих картах слишком велики, чтобы их можно было использовать в качестве обычных географических карт.
Учитывая вышесказанное, чтобы изобразить сетку меридианов и параллелей на карте, выполненной в полярной азимутальной проекции, нужно определить центр проекции (Северный или Южный полюс), провести ряд равномерно распределенных прямых, проходящих через центр карты, которые будут соответствовать меридианам, а затем изобразить ряд концентрических окружностей, которые будут обозначать параллели. Следовательно, необходимо определить, на каком расстоянии друг от друга должны располагаться эти окружности. Мы можем вычислить это расстояние, например, для гномонической проекции.
Выберем в качестве точки отсчета Южный полюс. Для данной точки А широтой и ее отображения А' определены два подобных прямоугольных треугольника, как показано на рисунке выше. Длины катетов малого треугольника таковы (напоминаем, что здесь принимает отрицательные значения):
Длины катетов большого треугольника равны R и r — расстояние от точки А' до центра. По теореме Фалеса имеем: