Мечта об идеальной карте. Картография и математика
Шрифт:
Карта Америки, выполненная в биполярной косой проекции.
Глава 8
Что Эйлер сказал картографу
— Вот еще одна вещь, которую мы переняли у вашего народа, — сказал Майн Герр, — создание карт. Но мы пошли в этом деле гораздо дальше вас. Каков, по-вашему, должен быть наибольший масштаб, чтобы карта стала по-настоящему полезной?
— Примерно шесть дюймов на милю.
— Только
— И часто вы ею пользуетесь? — спросил я.
— Ее еще ни разу не расстилали, — сказал Майн Герр. — Крестьяне были недовольны. Они сказали, что если такую карту расстелить на всю страну, она скроет солнечный свет! Так что пока мы используем саму страну как ее карту, и, смело могу вас заверить, действует она преотлично.
Льюис Кэрролл «Сильвия и Бруно», часть вторая (1893)
Мы вкратце рассмотрели равновеликую цилиндрическую проекцию Ламберта, центральную и стереографическую проекцию — три важные картографические проекции, которые помогли нам лучше понять некоторые аспекты картографии. Однако вернемся к главному вопросу этой книги: существуют ли правильные карты земной поверхности? Как построить правильную карту?
Чтобы не потерять нить рассуждений, напомним, что идеальная карта должна сохранять неизменными (за исключением масштаба) такие метрические свойства, как площади, углы, геодезические линии, формы и в целом длины кривых и расстояния. Иными словами, искомая картографическая проекция должна быть изометрической. Чтобы упростить поиски точной карты Земли, мы задались вопросом: достаточно ли свойства сохранения площадей для того, чтобы равновеликая проекция была изометрической? Положительный ответ значительно упростил бы задачу: мы смогли бы ограничиться рассмотрением только тех проекций, которые сохраняют площади.
Однако после изучения трех проекций стало понятно: чтобы проекция была изометрической и подходила для составления идеальной карты, сохранения только одного из метрических свойств (площадей, углов или формы геодезических линий) недостаточно.
Итак, наша первая попытка построить идеальную карту завершилась неудачей. Тогда рассмотрим следующий вопрос: достаточно ли сохранения двух из трех метрических свойств, чтобы проекция была изометрической?
Начнем с того, что рассмотрим проекцию сферы на плоскость, сохраняющую углы и площади, и попытаемся определить, будет ли эта проекция изометрической. Для этого используем результаты, изложенные в предыдущих главах. В них мы рассмотрели искажения, вносимые проекциями, которые оставляют площади и величины углов неизменными. Как вы знаете из главы 5, если проекция является конформной (равноугольной), искажения в направлении меридианов равны искажению в направлении параллелей :
=
С другой стороны, в этой же главе мы показали, что для равновеликих проекций величина искажения вдоль меридианов обратна величине искажения вдоль параллелей, что обеспечивает сохранение площадей:
= 1/
С учетом обоих равенств имеем:
= = 1
Иными словами, если проекция будет одновременно равновеликой и конформной, в ней не будет наблюдаться никаких искажений: ни вдоль меридианов, ни вдоль параллелей, ни в каком-либо другом направлении. Следовательно, эта проекция будет изометрической. Читатель может спросить: как быть с масштабом? Напомним, что мы рассматриваем сферическую модель Земли, следовательно, линейное изменение размеров никак не влияет на решение задачи.
Эврика! Точную карту Земли можно построить с помощью проекции,
Прежде чем начать поиски равновеликой конформной проекции, на основе которой можно составить идеальную карту Земли, продолжим двигаться намеченным путем и рассмотрим проекции, сохраняющие два других метрических свойства, например величины углов и геодезические линии.
Аналогично треугольнику на плоскости, который определяется как область, ограниченная тремя попарно пересекающимися прямыми, точки пересечения которых не лежат на одной прямой, сферический треугольник определяется как часть сферы, ограниченной тремя дугами попарно пересекающихся больших кругов, при этом точки пересечения не лежат на одном большом круге. Так как рассматриваемые нами проекции сохраняют геодезические линии, то проекцией сферического треугольника будет треугольник на плоскости. Поскольку эти проекции конформны, они сохраняют величины углов треугольников и их сумму. Из классической геометрии известно, что сумма углов треугольника равна (180°). Чему будет равна сумма углов сферического треугольника? Будет ли она также равна (180°), как и следовало ожидать?
Рассмотрим конкретный пример. Представим сферический треугольник, образованный дугой меридиана, заключенной между Северным полюсом и экватором, и другой, похожей, дугой, отстоящей на угол /2 (90°) от первой, как
Сферический треугольник, три угла которого равны 90°, следовательно, их сумма равна 270°.
Сумма углов этого сферического треугольника будет равна 3/2 (270°), а не (180°), как мы ожидали. Следовательно, не существует проекций сферы на плоскость, которые сохраняли бы величины углов и геодезические линии одновременно. Из этого утверждения следует: не существует изометрических проекций сферы на плоскость, то есть
ИДЕАЛЬНОЙ КАРТЫ НЕ СУЩЕСТВУЕТ.
Более того, это утверждение касается не только всей сферы, но и любого ее участка. Локальную изометрию сферы на плоскости построить невозможно, следовательно, точную карту даже малой части земной поверхности построить также нельзя.
Чтобы доказать это, рассмотрим сумму углов произвольного сферического треугольника. Ее значение находится на интервале между и 3 (не включая границы). Так как каждый сферический угол меньше , очевидно, что сумма трех углов будет меньше 3. Мы можем неограниченно приближаться к этому значению: достаточно рассмотреть треугольник, две вершины которого лежат на экваторе, а третья находится вблизи экватора так, что сферический треугольник покрывает почти все полушарие. Можно рассмотреть еще один предельный случай, когда две вершины треугольника лежат на экваторе, а третья совпадает с Северным полюсом так, что дуги меридианов будут образовывать сколь угодно малый угол. Сумма углов такого треугольника будет близка к . Можно доказать, что для любого сферического треугольника выполняется равенство:
Площадь сферического треугольника = R2 (сумма углов треугольника — ),
где R — радиус сферы. Так как сумма углов сферического треугольника произвольной формы и размера всегда больше , не существует проекций участков сферы на плоскость, в которых сохранялись бы углы и геодезические линии. Следовательно, локальные изометрии также не существуют. Ожидания, которые мы возлагали на построение равновеликой конформной проекции, оказались напрасными.