Мечта об идеальной карте. Картография и математика
Шрифт:
Это очевидно геометрическая проекция. Если мы вновь представим Землю как шар из полупрозрачного пластика, на поверхности которого нарисованы континенты, то сможем увидеть его гномоническую проекцию, если поставим шар на белый стол и разместим в центре шара точечный источник света.
Если точкой касания шара и плоскости является один из полюсов, то меридианы отображаются в виде радиальных равномерно распределенных прямых, исходящих из центра карты, где будет изображен полюс. Экватор в этом случае бесконечно удален, и его нельзя представить на карте. На такой бесконечной карте нельзя изобразить и полушарие целиком. Другие параллели будут иметь вид концентрических окружностей, центр которых совпадает с полюсом.
Карта,
Если точка касания шара и плоскости располагается на экваторе, то меридианы будут отображаться в виде параллельных прямых, распределенных неравномерно. Экватор в этой проекции будет выглядеть как прямая, перпендикулярная меридианам, а остальные параллели примут форму гипербол.
Если точкой касания шара и плоскости выбрать любую произвольную точку сферы, то меридианы будут изображаться в виде радиальных неравномерно распределенных прямых, указывающих на полюс. Экватор будет изображен в виде прямой, перпендикулярной только меридиану, проходящему через точку касания. Другие параллели, близкие к полюсу, примут форму эллипсов, параллель, проходящая через точку касания, будет изображена в виде параболы, остальные параллели — в виде гипербол.
Карта, выполненная в косой гномонической проекции с центром в Японии.
Вот некоторые свойства карты в гномонической проекции.
1. Как правило, круглая форма (возможно, обрезанная тем или иным способом), карта охватывает лишь часть одного из полушарий.
2. Большие круги, проходящие через точку касания, отображаются как радиальные равномерно распределенные прямые (если мы рассмотрим несколько больших кругов, отстоящих друг от друга на равные углы), а точки, удаленные от точки касания на одинаковое расстояние, примут форму окружностей с центром в этой точке.
3. Форма и распределение меридианов и параллелей будут выглядеть так, как мы описали выше. Искажение в направлении меридианов будет равно = 1/sin2 , в направлении параллелей — = 1/sin .
4. Гномоническая проекция сохраняет геодезические линии, но не сохраняет расстояния, площади и величины углов.
5. Искажение площадей, форм и углов, наименьшее в точке касания (в центре карты), будет увеличиваться по мере удаления от этой точки.
Доказать геометрическими методами, что гномоническая проекция сохраняет геодезические линии, очень просто. Геодезические линии сферы, большие круги, получаются сечением сферы плоскостью, проходящей через центр сферы. Следовательно, изображением большого круга в центральной проекции будет прямая, вдоль которой пересекаются плоскость, определяющая большой круг, и касательная плоскость, как показано на рисунке. Это доказывает, что гномоническая проекция преобразует геодезические линии сферы (ее большие круги) в геодезические линии плоскости (прямые).
Гномоническая проекция сохраняет геодезические линии и преобразует большие круги сферы в прямые на плоскости.
Кроме того, можно доказать, что это по сути единственная картографическая проекция, обладающая подобным свойством. Если говорить о сохранении площадей или углов, то этим свойством обладает множество проекций.
Чтобы определить, сохраняет ли гномоническая проекция площади и (или) углы, вычислим искажения, возникающие при ее использовании на меридианах и параллелях. Для этого построим индикатрису Тиссо для произвольной точки сферы, то есть рассмотрим окружность достаточно малого размера (в действительности она будет бесконечно малой, поэтому можно считать, что окружность располагается на плоскости, касающейся сферы в этой точке) и рассчитаем размеры эллипса, в который преобразуется эта окружность в гномонической проекции.
Представим Землю как сферу единичного радиуса. Рассмотрим плоскость проекции Т, которая касается сферы (допустим, точка касания
Построим проекцию этого диска на плоскость проекции Т в два этапа. На первом этапе диск D преобразуется в диск D', который лежит в плоскости, параллельной D. Центром этого диска является точка А' — отображение точки А, полученное с помощью гномонической проекции. В силу подобия треугольников (по теореме Фалеса), как вы можете видеть на следующем рисунке, радиус r' диска D' удовлетворяет соотношению
По правилам элементарной тригонометрии
sin = 1/|OA'|
Имеем:
Первый этап построения гномонической проекции.
Искомым отображением будет проекция диска D' на касательную плоскость Т — уже не диск, а эллипс. В направлении «запад — восток» диск D' пересекает плоскость Т, следовательно, проекция не изменит его размеров, и длина соответствующей полуоси эллипса будет равна уже вычисленному радиусу:
r' = r/sin
Итак, искажение вдоль параллели будет равно:
= 1/sin
Посмотрим, как изменится диск в направлении «север — юг», и рассчитаем искажение вдоль меридиана. Так как радиус r' очень мал по сравнению с расстоянием между А' и центром проекции О, угол А'ВС (см. след, рисунок) будет очень близок к прямому углу. Так как r достаточно мал, этот угол можно считать прямым. Как следствие, проекцией отрезка длиной r', лежащего в направлении «север — юг», будет отрезок на плоскости Т длиной r":
r" = r'/sin = r/sin2
согласно правилам элементарной тригонометрии. Искажение вдоль меридиана будет равно:
Второй этап построения гномонической проекции.
Как следствие, отображением D" окружности D радиуса r в центральной проекции будет эллипс, а длины его полуосей равны:
r' = r/sin и r" = r/sin2
Можно сделать вывод: центральная проекция не сохраняет площади, поскольку, как мы уже отмечали, искажение вдоль меридианов
= 1/sin2
должно быть обратным искажению вдоль параллелей
= 1/sin
Это соотношение не выполняется:
Гномоническая проекция также не сохраняет углы, поскольку искажение вдоль меридианов и параллелей отличается.