Чтение онлайн

на главную

Жанры

Мечта об идеальной карте. Картография и математика
Шрифт:

Это очевидно геометрическая проекция. Если мы вновь представим Землю как шар из полупрозрачного пластика, на поверхности которого нарисованы континенты, то сможем увидеть его гномоническую проекцию, если поставим шар на белый стол и разместим в центре шара точечный источник света.

Если точкой касания шара и плоскости является один из полюсов, то меридианы отображаются в виде радиальных равномерно распределенных прямых, исходящих из центра карты, где будет изображен полюс. Экватор в этом случае бесконечно удален, и его нельзя представить на карте. На такой бесконечной карте нельзя изобразить и полушарие целиком. Другие параллели будут иметь вид концентрических окружностей, центр которых совпадает с полюсом.

Карта,

выполненная в полярной гномонической проекции. Центром проекции является Северный полюс.

Если точка касания шара и плоскости располагается на экваторе, то меридианы будут отображаться в виде параллельных прямых, распределенных неравномерно. Экватор в этой проекции будет выглядеть как прямая, перпендикулярная меридианам, а остальные параллели примут форму гипербол.

Если точкой касания шара и плоскости выбрать любую произвольную точку сферы, то меридианы будут изображаться в виде радиальных неравномерно распределенных прямых, указывающих на полюс. Экватор будет изображен в виде прямой, перпендикулярной только меридиану, проходящему через точку касания. Другие параллели, близкие к полюсу, примут форму эллипсов, параллель, проходящая через точку касания, будет изображена в виде параболы, остальные параллели — в виде гипербол.

Карта, выполненная в косой гномонической проекции с центром в Японии.

Вот некоторые свойства карты в гномонической проекции.

1. Как правило, круглая форма (возможно, обрезанная тем или иным способом), карта охватывает лишь часть одного из полушарий.

2. Большие круги, проходящие через точку касания, отображаются как радиальные равномерно распределенные прямые (если мы рассмотрим несколько больших кругов, отстоящих друг от друга на равные углы), а точки, удаленные от точки касания на одинаковое расстояние, примут форму окружностей с центром в этой точке.

3. Форма и распределение меридианов и параллелей будут выглядеть так, как мы описали выше. Искажение в направлении меридианов будет равно = 1/sin2 , в направлении параллелей — = 1/sin .

4. Гномоническая проекция сохраняет геодезические линии, но не сохраняет расстояния, площади и величины углов.

5. Искажение площадей, форм и углов, наименьшее в точке касания (в центре карты), будет увеличиваться по мере удаления от этой точки.

Доказать геометрическими методами, что гномоническая проекция сохраняет геодезические линии, очень просто. Геодезические линии сферы, большие круги, получаются сечением сферы плоскостью, проходящей через центр сферы. Следовательно, изображением большого круга в центральной проекции будет прямая, вдоль которой пересекаются плоскость, определяющая большой круг, и касательная плоскость, как показано на рисунке. Это доказывает, что гномоническая проекция преобразует геодезические линии сферы (ее большие круги) в геодезические линии плоскости (прямые).

Гномоническая проекция сохраняет геодезические линии и преобразует большие круги сферы в прямые на плоскости.

Кроме того, можно доказать, что это по сути единственная картографическая проекция, обладающая подобным свойством. Если говорить о сохранении площадей или углов, то этим свойством обладает множество проекций.

Чтобы определить, сохраняет ли гномоническая проекция площади и (или) углы, вычислим искажения, возникающие при ее использовании на меридианах и параллелях. Для этого построим индикатрису Тиссо для произвольной точки сферы, то есть рассмотрим окружность достаточно малого размера (в действительности она будет бесконечно малой, поэтому можно считать, что окружность располагается на плоскости, касающейся сферы в этой точке) и рассчитаем размеры эллипса, в который преобразуется эта окружность в гномонической проекции.

Представим Землю как сферу единичного радиуса. Рассмотрим плоскость проекции Т, которая касается сферы (допустим, точка касания

расположена в Северном полушарии). На эту плоскость мы спроецируем часть полусферы, при этом центр проекции будет совпадать с центром сферы. Пусть А — точка сферы с широтой , D — диск достаточно малого радиуса r, который касается сферы в точке А.

Построим проекцию этого диска на плоскость проекции Т в два этапа. На первом этапе диск D преобразуется в диск D', который лежит в плоскости, параллельной D. Центром этого диска является точка А' — отображение точки А, полученное с помощью гномонической проекции. В силу подобия треугольников (по теореме Фалеса), как вы можете видеть на следующем рисунке, радиус r' диска D' удовлетворяет соотношению

По правилам элементарной тригонометрии

sin = 1/|OA'|

Имеем:

Первый этап построения гномонической проекции.

Искомым отображением будет проекция диска D' на касательную плоскость Т — уже не диск, а эллипс. В направлении «запад — восток» диск D' пересекает плоскость Т, следовательно, проекция не изменит его размеров, и длина соответствующей полуоси эллипса будет равна уже вычисленному радиусу:

r' = r/sin

Итак, искажение вдоль параллели будет равно:

 = 1/sin

Посмотрим, как изменится диск в направлении «север — юг», и рассчитаем искажение вдоль меридиана. Так как радиус r' очень мал по сравнению с расстоянием между А' и центром проекции О, угол А'ВС (см. след, рисунок) будет очень близок к прямому углу. Так как r достаточно мал, этот угол можно считать прямым. Как следствие, проекцией отрезка длиной r', лежащего в направлении «север — юг», будет отрезок на плоскости Т длиной r":

r" = r'/sin = r/sin2

согласно правилам элементарной тригонометрии. Искажение вдоль меридиана будет равно:

Второй этап построения гномонической проекции.

Как следствие, отображением D" окружности радиуса r в центральной проекции будет эллипс, а длины его полуосей равны:

r' = r/sin и r" = r/sin2

Можно сделать вывод: центральная проекция не сохраняет площади, поскольку, как мы уже отмечали, искажение вдоль меридианов

= 1/sin2

должно быть обратным искажению вдоль параллелей

 = 1/sin

Это соотношение не выполняется:

Гномоническая проекция также не сохраняет углы, поскольку искажение вдоль меридианов и параллелей отличается.

Поделиться:
Популярные книги

Последний попаданец 8

Зубов Константин
8. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 8

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Странник

Седой Василий
4. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Странник

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V