Чтение онлайн

на главную

Жанры

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Шрифт:

С одной стороны, нет оснований не включать космологическую постоянную в уравнения Эйнштейна. Теория Эйнштейна была основана на принципе симметрии, утверждавшем, что законы природы не должны зависеть от той системы отсчета в пространстве и во времени, которую мы используем для изучения этих законов. Но первоначальная теория Эйнштейна не была самой общей теорией, удовлетворяющей такому принципу симметрии. Существует громадное количество возможных разрешенных слагаемых, которые можно добавить в уравнения поля тяготения, причем влияние этих слагаемых на астрономических расстояниях будет пренебрежимо мало.

Но кроме этих слагаемых есть одно-единственное слагаемое, которое можно добавить в уравнения поля общей теории относительности без нарушения фундаментальных принципов симметрии этой теории и которое будет важно в космологических масштабах, – это слагаемое, включающее космологическую постоянную. В 1915

г. Эйнштейн опирался на предположение, что уравнения поля тяготения должны быть простейшими из возможных. Опыт последних трех четвертей ХХ в. научил нас не доверять такому предположению. Мы обнаружили, что всякое усложнение наших теорий, не запрещенное какой-то симметрией или другим фундаментальным принципом, происходит на самом деле. Поэтому недостаточно сказать, что космологическая постоянная это ненужное усложнение. Простота, как и все остальное, требует объяснения.

В квантовой механике проблема еще сложнее. Разные поля, заполняющие нашу Вселенную, испытывают непрерывные квантовые флуктуации, в результате которых пустое пространство обретает энергию. Эта энергия наблюдаема только благодаря оказываемому гравитационному действию. Дело в том, что энергия любого сорта порождает гравитационное поле и, в свою очередь, испытывает воздействие других гравитационных полей, так что энергия, заполняющая пространство, может оказывать существенное влияние на расширение Вселенной. Мы не можем вычислить энергию в единице объема, порождаемую такими квантовыми флуктуациями, – если пользоваться при расчете простейшими приближениями, энергия оказывается бесконечной. Но если сделать несколько разумных предположений о том, как отбросить высокочастотные флуктуации, ответственные за эту бесконечность, то вакуумная энергия в единице объема оказывается все равно чудовищно большой, в 10120раз большей, чем это допускается наблюдаемой скоростью расширения Вселенной. Пожалуй, это самый худший провал оценки по порядку величины во всей истории науки.

Если энергия пустого пространства положительна, то она порождает гравитационное отталкивание между частицами материи на очень больших расстояниях, в точности как то слагаемое с космологической постоянной, которое Эйнштейн добавил к своим уравнениям в 1917 г. Поэтому мы можем рассматривать энергию, возникающую вследствие квантовых флуктуаций, как дающую вклад в «полную» космологическую константу. Расширение Вселенной определяется только этой полной космологической константой, а не отдельно той космологической константой, которая входит в полевые уравнения общей теории относительности, или константой, связанной с квантовой энергией вакуума. Возникает возможность, что проблема космологической постоянной может как бы скомпенсировать проблему энергии пустого пространства. Иными словами, возможно, что отрицательная космологическая постоянная в эйнштейновских полевых уравнениях в точности сокращает действие чудовищной вакуумной энергии, возникающей за счет вакуумных флуктуаций. Но чтобы не войти в противоречие с тем, что мы знаем о расширении Вселенной, полная космологическая постоянная должна быть столь мала, что два слагаемых, из которых она состоит, обязаны сократиться вплоть до 120 первых значащих цифр. Это не пустяк, который можно оставить без объяснений.

В течение многих лет физики-теоретики пытаются понять механизм сокращения полной космологической постоянной [202] , пока что без особого успеха. Если принять теорию струн, то ситуация становится еще хуже. Разные теории струн приводят к разным значениям полной космологической постоянной (включающей эффекты вакуума гравитационного поля), но все они оказываются чудовищно большими [203] . При такой большой полной космологической постоянной пространство было бы так скручено, что ни в малейшей степени не было бы похоже на обычное трехмерное пространство с евклидовой геометрией, в котором мы живем.

Б202

Abbott L. // Scientific American 258, no. 5 (1985): 106.

Б203

Мы не можем даже надеяться, что найдется механизм, с помощью которого вакуумное состояние потеряет энергию, перейдя в состояние с более низкой энергией и, следовательно, меньшей космологической постоянной, и в конце концов спустится в состояние с нулевой полной космологической постоянной, так как некоторые из этих возможных вакуумных состояний в теориях струн уже обладают большой отрицательной полной космологической постоянной.

Если все иные способы объяснения не годятся, нам ничего не остается,

как вернуться назад, к антропному принципу. Может существовать много разных «вселенных», каждая со своим значением космологической постоянной. Если это так, то единственная Вселенная, в которой, как можно думать, мы находимся, это та, где полная космологическая постоянная достаточно мала, чтобы жизнь могла возникнуть и развиться. Более точно, если бы полная космологическая постоянная была большой и отрицательной, то Вселенная прошла бы свой цикл расширения и последующего сжатия слишком быстро, и жизнь не успела бы развиться. Наоборот, если бы полная космологическая постоянная была большой и положительной, Вселенная продолжала бы вечное расширение, но силы отталкивания, порождаемые космологической постоянной, предотвратили бы гравитационное сжатие с образованием тех комков, из которых потом в ранней Вселенной возникли галактики и звезды, а следовательно, жизни опять не нашлось бы места. Возможно, что правильная теория струн – это теория (не знаем, единственная или нет), которая приводит к значению полной космологической постоянной, лежащему только в том сравнительно узком интервале небольших значений, которые допускают существование жизни.

Одним из интересных следствий такой линии рассуждений является вывод, что нет никаких причин, почему полная космологическая постоянная (включающая эффекты квантовых флуктуаций вакуума) должна строго равняться нулю. Антропный принцип требует всего лишь, чтобы она была достаточно мала и позволяла галактикам образоваться и выжить в течение миллиардов лет. На самом деле, астрономические наблюдения уже давно указывают на то, что полная космологическая постоянная не равна нулю, а имеет небольшое положительное значение.

Одно из таких свидетельств связано со знаменитой проблемой космологической «скрытой массы». Наиболее естественным значением плотности массы Вселенной (которое кстати, требуется и в популярных сейчас космологических теориях) является такое значение, которое только-только позволяет Вселенной расширяться вечно [204] . Но эта плотность в пять-десять раз больше той, которая определяется массой скоплений галактик (это вытекает из изучения движения галактик в таких скоплениях). Скрытая масса могла бы соответствовать какому-то типу темной материи, но есть и другая возможность. Как уже отмечалось, наличие положительной космологической постоянной эквивалентно постоянной положительной однородной плотности энергии, которая, согласно знаменитому соотношению Эйнштейна между энергией и массой, эквивалентна постоянной однородной плотности массы. Таким образом, не исключено, что недостающие 80–90 % космической плотности «массы» обеспечиваются совсем не реальным веществом того или иного сорта, а положительной космологической постоянной.

Б204

Если обнаружится меньшая или большая плотность, то сразу возникнет вопрос, почему расширение продолжалось миллиарды лет и все еще замедляется.

Мы не хотим этим сказать, что нет вообще никакой разницы между плотностью реальной материи и положительной полной космологической постоянной. Вселенная расширяется, так что какой бы ни была сегодня плотность реальной материи, в прошлом она была значительно больше. Напротив, полная космологическая постоянная и соответствующая ей плотность массы неизменны во времени. Чем больше плотность материи, тем больше скорость расширения Вселенной, так что в прошлом скорость расширения должна была бы быть намного больше, если бы скрытая масса была связана не с космологической постоянной, а с обычной материей.

Другое указание на положительность полной космологической постоянной связано с давно дебатируемой проблемой возраста Вселенной. В принятых космологических теориях мы используем наблюдаемую скорость расширения Вселенной, чтобы затем установить, что ее возраст составляет от 7 до 12 миллиардов лет. Но возраст сферических звездных скоплений внутри нашей собственной Галактики оценивается обычно как 12–15 миллиардов лет. Мы сталкиваемся с перспективой, что Вселенная моложе, чем звездные скопления внутри нее. Чтобы избежать этого парадокса, следует принять наименьшую оценку для возраста скоплений и наибольшую оценку для возраста Вселенной. С другой стороны, как мы видели, введение положительной космологической постоянной вместо темной материи приводит к уменьшению наших оценок скорости расширения Вселенной в прошлом, а следовательно, к увеличению возраста Вселенной, получаемого из любого сегодняшнего значения скорости расширения. Например, если космологическая постоянная вносит вклад в 90 % космической плотности массы, то даже при самых больших сегодняшних оценках скорости расширения, возраст Вселенной получается равным не семь миллиардов, а не менее одиннадцати миллиардов лет. Таким образом, исчезает всякое серьезное расхождение с возрастом сферических скоплений.

Поделиться:
Популярные книги

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Без Чести

Щукин Иван
4. Жизни Архимага
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Без Чести

Безродный

Коган Мстислав Константинович
1. Игра не для слабых
Фантастика:
боевая фантастика
альтернативная история
6.67
рейтинг книги
Безродный

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Ваше Сиятельство 4т

Моури Эрли
4. Ваше Сиятельство
Любовные романы:
эро литература
5.00
рейтинг книги
Ваше Сиятельство 4т

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Скрываясь в тени

Мазуров Дмитрий
2. Теневой путь
Фантастика:
боевая фантастика
7.84
рейтинг книги
Скрываясь в тени

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии