Механика от античности до наших дней
Шрифт:
В 1932—1933 гг. в небольшой статье «О принципе Гаусса» Четаев обобщил понятие о возможных перемещениях, что позволило устранить противоречие между принципом Гаусса и принципом Даламбера—Лагранжа, возникшее в аналитической механике при переходе от исследований линейных неголономных систем к нелинейным неголономным системам.
Четаев обобщил также понятие освобождение материальных систем от связей, лежащее в основе принципа Гаусса. Четаев высказал новую точку зрения на освобождение материальных систем, понимая под освобождением системы всякое ее преобразование, подчиняющееся определенному математическому алгоритму. В дальнейших работах Н.Г. Четаева и его школы с этой точки зрения был рассмотрен широкий круг вопросов. Укажем в качестве примера работы Н.Г. Четаева и Т.Н. Пожарицкого о механических системах с неидеальными связями. Эти исследования находят применение в теории
Основополагающими работами в области аналитической механики являются исследования советских ученых по уравнениям динамики в групповых переменных. В 1927— 1928 гг. Четаев вывел уравнения Пуанкаре в новой, канонической форме и обобщил их на случай нестационарных связей. Эти результаты были им развиты в 1941 г. Было показано, писал Четаев, что «весьма интересная мысль Пуанкаре о применении групп Ли в динамике может быть развита на случай зависимых переменных, когда группа возможных перемещений интранзитивна».
К исследованиям Четаева примыкают интересные работы советских ученых М. Ш. Аминова и А.А. Богоявленского.
Еще одно направление, в котором развивались исследования по аналитической механике, — применение понятия теоретически устойчивых движений к исследованию действительных движений механики. Основные работы и здесь принадлежат Н.Г. Четаеву, который высказал и развил идею о возможности создания аналитической механики на основе отбора истинных состояний движения из всех возможных движений, обладающих устойчивостью того или иного характера. Эта идея была развита Четаевым в работах 1931—1945 гг. Сформулировав задачу об устойчивости механических систем, Четаев дает строгое доказательство того, что для невозмущенных движений в случае их устойчивости в первом приближении уравнения Пуанкаре в вариациях будут иметь лишь нулевые характеристические числа. Если невозмущенное движение устойчиво, то соответствующие уравнения в вариациях приводятся к системе уравнений с постоянными коэффициентами.
В механике твердого тела в мировой науке на первый план выдвигались вопросы, связанные с гироскопией. Советская механика была представлена в этой области
A. Н. Крыловым и большой группой ученых, сформиро-вавшихся уже в советское время ( Е.Л. Николаи,
B. В. Булгаков, А.Ю. Ишлинский и др.) Принимая во внимание достижения в годы Великой Отечественной вой-ны и блестящие успехи в мирное время в освоении космического пространства, можно считать неоспоримым, что как советская гироскопическая техника, так и подкреплявшая ее теория уже тогда занимали то выдающееся положение, которое они сохраняют по сей день. Это верно и для такой почти сливающейся с математикой области, как теория динамических систем. Благодаря работам Московской математической школы по качественной теории дифференциальных уравнений в СССР были быстро освоены новые топологические методы исследования, и в 30е годы советские ученые создали ряд выдающихся работ по общей теории динамических систем.
В теории устойчивости тоже тесно переплетаются разработка общих математических методов и исследование более конкретных механических проблем. Задачи, выдвигаемые различными областями техники, заставили заняться помимо статической и динамической устойчивостью не только в рамках аналитической механики неизменяемых систем, но и в теории упругости, в механике жидкостей и газов. Потребовалось применение более строгих математических методов, поэтому были широко использованы замечательные результаты Ляпунова, и началось дальнейшее развитие его методов. Оказалось целесообразным применение в различных вопросах разных характеристик устойчивости. Формируется новая научная школа, разрабатывающая этот обширный цикл вопросов; в нее входят и специалисты по небесной механике, для которых устойчивость по Ляпунову, т. е. по отношению к возмущениям начальных данных, имеет особо важное значение (Московская школа — Н.Д. Моисеев, Г.Н. Дубошин, Н.Ф. Рейн и др.), и ученые, занимавшиеся общими методами аналитической механики и теории дифференциальных уравнений (Казанская школа — Н.Г. Четаев, Г.В. Каменков, И.Г. Малкин, К.П. Персидский и др.).
Особенно бурно и широко развивалась теория колебаний, в которой методы Ляпунова тоже нашли плодотворное применение. Нелинейные колебания, изучение которых стало первоочередной задачей к началу 20-х годов, стали в сущности предметом новой научной дисциплины, получившей название (пожалуй, не совсем точное) нелинейной механики. Уже к началу 30-х годов советская механика занимает в этой области ведущее положение благодаря трудам школы Л.И. Мандельштама (1879— 1944), Н.Д. Папалекси (1880—1947), А.А. Андронова (1901—1952),
МЕХАНИКА СПЛОШНОЙ СРЕДЫ В ДОВОЕННЫЙ ПЕРИОД
В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных частных задач. Это было продолжением и расширением исследований русских механиков дореволюционного периода. Но сложились также новые школы и направления. Систематически велись исследования по плоской задаче теории упругости с помощью методов теории функций комплексного переменного, большая группа ученых работала по теории пластинок и оболочек, приобретавшей все большее значение для техники. Меньше внимания уделялось контактным задачам, но и они стали постоянным предметом исследований. Впервые после трудов Остроградского значительные результаты были получены в теории распространения упругих волн, которая разрабатывалась в связи с запросами сейсмологии. К этому списку надо добавить исследование устойчивости упругих систем, теорию стержневых систем, графические методы. Тут мы находимся на стыке теории упругости и таких прикладных дисциплин, как строительная механика и сопротивление материалов.
Впервые полноправным разделом механики стала теория пластичности. Наряду с определенными результатами, полученными на основе ранее разрабатывавшихся статических теорий, были начаты обширные исследования новых моделей пластического и вязкопластического состояний. Это сочеталось с интенсивной работой в таких практически важных и специфических областях, как механика сыпучей массы и механика грунтов.
В гидро- и аэромеханике больше всего усилий потребовала теория крыла и винта самолета в связи с переходом к исследованию неустановившихся движений и к учету сжимаемости. Приближение скоростей в авиации к звуковым, а также задачи баллистики выдвинули столько новых вопросов, что в особую дисциплину выделилась газовая динамика. Многочисленные работы были посвящены теории пограничного слоя. Широко разрабатывалась теория волн (ранее представленная только работами Остроградского и Жуковского), включая теорию волнового сопротивления. Возникли новые имеющие фундаментальное значение исследования по теории турбулентности с применением вероятностных методов. Теория фильтрации именно в трудах советских механиков этого периода из инженерной дисциплины, представляющей одну из глав гидравлики, превратилась в отдел гидродинамики. Также новаторскими были исследования по динамике смесей жидкостей и газов — здесь мы переходим в область неньютоновых жидкостей.
Сравнительно мало разрабатывались специфические проблемы теории вязкой жидкости, но и тут были получены заметные результаты. Выдающиеся результаты были достигнуты при исследовании существования и единственности решений общих уравнений гидродинамики идеальной жидкости.
Таким образом, к исходу 30-х годов советская наука была представлена во всех областях механики того периода, притом не единичными исследователями, а коллективами, целыми научными школами и направлениями. Полнокровными стали новые институты и лаборатории Академии наук СССР, в том числе Институт механики, Сейсмологический институт, Математический институт им. В.А. Стеклова (его отдел механики) и др. Механика заняла уже заметное место и в республиканских академиях.
Убедительным доказательством того, насколько многочисленны стали кадры механиков и как выросла потребность в них, является выделение во многих университетах механико-математических факультетов и организация при них научно-исследовательских институтов (например, в МГУ). О том же свидетельствует и факт систематического проведения совещаний и конференций, например Всесоюзной конференции по колебаниям (1931), всесоюзных конференций по аэродинамике (1931, 1933), конференции по волновому сопротивлению (1937), Всесоюзного совещания по строительной механике и теории упругости (1939). На конец 1941 г. были запланированы Второе всесоюзное совещание по строительной механике и теории упругости и Первое всесоюзное совещание по аэродинамике и общей механике. Оба они не состоялись из-за начавшейся войны, но интересна намеченная программа их работы, выявляющая преобладавшие в то время направления.