Меридианы и календарь
Шрифт:
Жюль Верн
МЕРИДИАНЫ И КАЛЕНДАРЬ
Сообщение, направленное в Географическое общество (к заседанию 4 апреля 1873 г.) в ответ на запрос гг. Урье и Фараге, пожелавших узнать, на каком меридиане происходит смена дат по гражданскому календарю. [1]
Господа!
Центральная комиссия Географического общества поручила мне ответить на очень интересный вопрос, который одновременно сформулировали гражданский инженер г-н Урье и главный инженер ведомства путей сообщения департаментов Ло и Гаронна г-н Фараге.
1
Подзаголовок печатной публикации не дает оснований предполагать обязательное присутствие Ж. Верна на упомянутом заседании Парижского Географического общества, хотя ряд исследователей придерживается именно этой точки зрения. Среди отечественных
Полагаю, сходство между содержанием их писем и моего романа «Вокруг света в восемьдесят дней», вышедшего три месяца назад, — простое совпадение. В качестве введения в интересующий нас вопрос я прошу у названных господ разрешения процитировать строки, которыми кончается мое произведение.
Речь идет об очень странной ситуации, которую описал Эдгар По в рассказе под названием «Неделя с тремя воскресеньями». Повторяю, речь идет о том положении, в которое попадают люди, совершающие путешествие вокруг света, направляясь либо на восток, либо на запад. В первом случае, вернувшись в исходную точку своего маршрута, они выигрывают сутки, во втором — теряют их. Я писал:
Действительно, отправившись на восток, Филеас Фогг (герой моей книги) двигался навстречу солнцу, и, следовательно, длительность суток для него уменьшалась на четыре минуты каждый раз, как он пересекал) очередной меридиан. Так как окружность земного шара разделена на триста шестьдесят градусов, то, если умножить это число на четыре минуты, мы получим ровно двадцать четыре часа. <…> Иными словами, пока Филеас Фогг, отправившись на восток, видел прохождение солнца по небесному меридиану восемьдесят раз, его коллеги, остававшиеся в Лондоне, наблюдали подобное явление только семьдесят девять раз.
Итак, вопрос соответствующим образом задан, и мне остается только резюмировать его.
Каждый раз, когда путешествие вокруг света совершается в восточном направлении, выигрываются сутки. Каждый раз, когда путешествие вокруг света совершается в западном направлении, теряются сутки, то есть те самые двадцать четыре часа, за которые Солнце в своем видимом движении обходит Землю. Так что это время и в том, и в другом случае надо соотнести с длительностью самого путешествия.
На практике этот результат выражается в том, что морская администрация как бы добавляет довольствия на лишние сутки кораблям, следующим из Европы и огибающим мыс Доброй Надежды, и, напротив, вычитает их у экипажей, идущих вокруг мыса Горн. Именно этим можно объяснить тот странный факт, что матросы, двигающиеся в восточном направлении, питаются лучше плывущих на запад. В результате, когда и те и другие возвращаются в порт отправления, получается, что одним досталось больше завтраков, обедов и ужинов, чем другим, несмотря на то что они пробыли в море одинаковое количество минут. На что следует объяснение: они, мол, и работали на целые сутки больше. Однако эти сутки они, разумеется, не «прожили».
Таким образом, господа, из приведенного рассуждения о потерянном или выигранном дне в зависимости от направления движения надо сделать логичный вывод, что смена даты должна совершаться в каком-то одном месте земного шара. Но где же находится эта точка? Вот проблема, требующая решения, и нет ничего удивительного, что она привлекла внимание авторов упомянутых ранее писем. Оба письма, следовательно, можно свести к одному положению: «Да, имеется привилегированный меридиан, где осуществляется перемена даты», — утверждает г-н Фараге. «Так где же находится этот особый меридиан?» — вопрошает г-н Урье.
Прежде всего, господа, я скажу, что ответить на этот вопрос с чисто космографической точки зрения очень трудно. Вот если бы гг. Урье и Фараге могли мне сказать, в какой стороне горизонта солнце вставало в первые дни творения, если бы они знали, на каком меридиане впервые установился полдень, ответить на их вопрос было бы легко. Я бы сказал им: вот этот-то первый меридиан и является, по выражению г-на Фараге, привилегированным, именно о нем и спрашивал г-н Урье. Но ни один из этих инженеров не прожил столь долго, чтобы наблюдать первый восход лучезарной звезды, а следовательно, не может сказать мне, где располагался первый меридиан. Так что, оставив пока научную сторону дела, перейду к практической и попытаюсь разъяснить ее в нескольких словах.
Из вывода о том, что при следовании на восток выигрываются сутки, а при следовании на запад — теряются, проистекает ошибка, сохранявшаяся в течение длительного времени. Первые мореплаватели навязали — причем совершенно неосознанно — свой календарь новым землям. Как правило, дни отсчитывали в зависимости от того, в каком направлении следовали первооткрыватели — в восточном или западном. Европейцы, достигая этих неизвестных стран, заселенных туземцами, которых не слишком беспокоило, по каким дням и числам они поедают себе подобных, — европейцы, повторяю, вводили свой календарь, так и оставшийся там навсегда. Так на протяжении столетий в Кантоне [2] точкой отсчета был приезд Марко Поло, а на Филиппинах — прибытие Магеллана.
2
Кантон — старое название города Гуанчжоу в Южном Китае.
Однако ошибка в согласовании дат должна была создавать проблемы в торговой практике. Поэтому лет двадцать назад (точнее сказать не могу, но это может сделать наш уважаемый коллега господин адмирал из Парижа) в Маниле окончательно решили установить европейский календарь, урегулировавший ситуацию и ставший, так сказать, официальным.
Добавлю, что меридиан, с помощью которого регулируют счет времени, на практике существует уже давно. Это сто восьмидесятый, считая от нулевого; именно по нему устанавливают судовые хронометры; в качестве нулевого же для английских судов принят меридиан Гринвича, для французских — Парижа, для кораблей Соединенных Штатов Америки — Вашингтона.
В результате возникают ситуации, описанные в английском журнале «Природа», куда я в 1872 г. переправил вопрос, сформулированный двумя упомянутыми инженерами:
На вопрос мистера Пирсона, опубликованный в номере от 17 апреля (28 жерминаля. — Ж. В.), не может быть дан точный или научный ответ ввиду того, что естественной демаркационной линии, или линии перемены дат, не существует, а установление таковой производится по соглашению, то есть является условным. Еще не так давно расходились календарные даты в Маниле и Макао, [3] а до передачи территории Аляски американцам даты там отличались от счета дней на соседних территориях британской Америки. Тогда вступило в действие правило, гласившее, что в пунктах с восточной долготой за точку отсчета принимается прибытие европейцев через мыс Доброй Надежды, а в пунктах с западной долготой — через мыс Горн. Это правило нашло практическое применение в Тихом океане. С тех пор капитан всякого судна при пересечении сто восьмидесятого меридиана обычно вносил в судовой журнал соответствующую запись, добавляя день или сохраняя прежнюю дату в зависимости от направления, в котором шел корабль. Если же капитан пересекал указанный меридиан, но сразу же возвращался назад, то не производил смены дат. Таким образом в океане время от времени могут и должны встречаться корабли, капитаны которых придерживаются различных дат. Самый известный случай такого рода произошел во время войны с Россией, когда наша эскадра [4] встретилась у берегов Камчатки с китайской эскадрой.
3
Макао — во времена Верна португальская колония на южном побережье Китая, в устье р. Чжуцзян; китайское название — Аомынь (Аомэнь); в 1999 г. вошла в состав КНР.
4
Речь идет о союзной англо-французской эскадре из шести судов под командованием контр-адмиралов Прайса и Феврье де Пуанта, которая в августе 1854 г., во время Крымской войны, подошла к побережью Камчатки и попыталась овладеть Петропавловском-Камчатским. Защитники города во главе с губернатором генерал-майором В. С. Завойко разбили высаженный интервентами десант и вынудили врага убраться восвояси.
Приведенная цитата, господа, может внушить вам предвзятое мнение о возможном решении нашей проблемы. После обсуждения вопроса с практической стороны я осветил его также с исторической точки зрения, но научен ли полученный результат? Нет, хотя о таком решении упоминается в письме г-на Фараге.
Теперь, чтобы окончательно ответить на этот вопрос, позвольте мне, господа, процитировать письмо, направленное лично мне одним из крупнейших наших математиков, г-ном Ж. Бертраном [5] из Института: [6]
5
Бертран Жозеф Луи-Франсуа (1822–1900) — французский математик, член Парижской академии наук, иностранный почетный член Санкт-Петербургской академии наук. Наиболее значительные его работы относятся к области теории подобий, теории вероятностей, математическому анализу и теории групп. Его учебники по элементарной математике, переведенные на русский язык, входили в число основных пособий для гимназий и реальных училищ.
6
Институт Франции — объединение пяти академий: 1) Французской академии (осн. в 1635 г.), занимающейся вопросами французского языка и литературы, 2) Академии надписей и изящной словесности (осн. в 1701 г., под современным названием с 1716 г.), занимающейся изучением надписей, документов, художественной литературы, языков и культур античности. Средневековья, а также эпохи классицизма во Франции, 3) Академии наук (осн. в 1666 г. как Всеобщая академия), 4) Академии изобразительных искусств (осн. в 1648 г.), 5) Академии моральных и политических наук (осн. в 1832 г.).