Чтение онлайн

на главную - закладки

Жанры

Мир математики. т 40. Математическая планета. Путешествие вокруг света
Шрифт:

Продавщица предложила 260. В конце концов я сказал, что 250 — моя последняя цена. Продавщица настаивала на 260, но я не сдавался. В итоге вещь досталась мне за 250.

После торга я спросил продавщицу, какую максимальную скидку она была готова предложить. Продавщица ответила: 25 % и добавила, что такова максимальная скидка в ее магазине, а в других местах, например на рынке, скидка могла быть намного больше. Таким образом, я провел неплохую сделку: вещь стоимостью 350 досталась мне за 250. Скидка оказалась больше 28 %.

На основе этих практических результатов я составил новую математическую модель торга. В значениях, приведенных в таблице, скрыто какое-то равновесие, а также они очевидно сходятся к итоговой цене, которая устроит и покупателя, и продавца. Какому закону подчиняется это равновесие?

Предложим гипотезу: каждая цена представляет собой среднее значение двух последних предложенных цен. Иными словами, если x0 — исходная цена, предложенная продавцом, x1 — первая цена, предложенная покупателем, то общий член числовой последовательности, образующейся в ходе торга, задается формулой:

Это не что иное, как среднее арифметическое двух последних цен, упомянутых в торге. Приведенное выражение очень похоже на формулу общего члена в последовательности Фибоначчи. Сравним результаты трех предыдущих торгов с этой моделью, которую будем называть моделью средней цены.

Живительное сходство. Следовательно, в туристических местах торг можно достаточно точно описать моделью средней цены. Но как определить, к какому значению стремится цена в этой модели? На какой цене сойдутся покупатель и продавец в подобных ситуациях? Рассмотрим начальные цены трех предыдущих торгов и посмотрим, что произойдет.

Что общего у этих чисел и пар начальных значений цен (45, 20), (80000, 40000) и (350, 200)? Если мы посмотрим на соответствующие графики, то заметим явное сходство.

Чтобы понять, что происходит, рассмотрим формулу общего члена в этой модели.

Предел X, к которому сходятся члены последовательности цен, определяется двумя исходными ценами — ценой продавца (x0) и ценой покупателя (x1):

Вычислим X для начальных значений в трех предыдущих примерах и покажем, к какому значению стремится итоговая цена.

Обратите внимание, что во всех трех случаях пятый член настолько близок к предельному значению, что продолжать торговаться не имеет особого смысла. Возможно, именно поэтому при торге покупатель и продавец редко меняют цену больше четырех-пяти раз. Как мы уже говорили, участники реальных торгов не руководствуются описанной моделью сознательно, но эта модель настолько близка к тому, как происходит торг

в действительности, что остается только удивляться способности людей интуитивно оценивать числа в поисках равновесного значения.

Абак

Первым вычислительным устройством в истории были человеческие руки. Говоря в компьютерных терминах, руки были первым программным обеспечением в истории. На пальцах одной руки можно досчитать до 5, на пальцах двух рук — до 10, а если использовать пальцы ног, то и до 20. Но если обозначать фалангами пальцев единицы, а пальцами — степени 10, то можно досчитать до десяти миллиардов.

Впрочем, этот метод непрактичен, поэтому его никто не использует.

В различных культурах Европы и Азии руки служили не только для счета, но и для вычислений, особенно для умножения. Чтобы умножить 6 на 8 на пальцах, нужно действовать следующим образом. Сначала досчитаем до 6, разгибая пальцы на одной руке, то есть досчитаем до 5 и загнем один палец. Один палец останется загнутым, 4 — разогнутыми. Аналогичным образом досчитаем до 8 на другой руке.

Три пальца останутся загнутыми, 2 — разогнутыми. Загнутыми оказалось 1 + 3 = 4 пальца — это будут десятки. Перемножим число разогнутых пальцев: 4·2 = 8 — это будут единицы. Результат равен 40 + 8 = 48.

В этом методе сочетаются сложение в уме и простое умножение небольших чисел, меньших пяти. Говоря математическим языком, умножение чисел, меньших либо равных 10, сводится к умножению по модулю 5. Эта система используется в повседневной жизни и даже в научной среде в ряде стран, объединенных общими культурными связями: в Индии, Индонезии, Ираке, Сирии и Северной Африке.

Но для действий с большими числами этот метод не очень удобен. Конечно, его можно улучшить и применять для умножения любых чисел, даже довольно больших, но, как это часто бывает, теоретические улучшения вовсе не обязательно будут достаточно эффективными для практического использования. Так что для действий с большими числами все же лучше использовать вычислительные устройства.

В одном из стихов главы 27 трактата Лао-цзы «Дао дэ цзин» говорится: тот, кто умеет считать, не пользуется чоу. Чоу — это инструмент для счета, состоявший из деревянной доски и нескольких бамбуковых палочек. Чоу был создан в V–III веках до н. э., так что это приспособление можно назвать одним из древнейших инструментов для вычислений.

Чоу представлял собой доску размером 8 x 8 клеток, в которых помещались бамбуковые палочки, обозначавшие числа. Изначально число палочек соответствовало числу единиц (до 10), но затем была создана упрощенная система, в которой поперечно лежащие палочки обозначали 5 или 10 единиц. Таким образом, числа от 1 до 5 обозначались вертикально расположенными палочками, числа 6, 7, 8 и 9 — горизонтальной палочкой (она обозначала 5), под которой выкладывалось необходимое количество вертикальных палочек. Число 10 было представлено горизонтальной палочкой, последующие десятки — дополнительными горизонтальными палочками.

Для обозначения чисел 60, 70, 80 и 90 вертикальные палочки выкладывались сверху, чтобы отличить их от 6, 7, 8 и 9. Возникал вопрос: как расположить палочки для обозначения сотен, тысяч и последующих степеней 10? Китайцы решили эту задачу при помощи доски, столбцы которой обозначали различные степени 10.

В этой системе нулю соответствовала пустая клетка.

Представление чисел 6104 и 84 071 на чоу.

При умножении в уме вычислялись суммы и произведения небольших чисел, представленных в таблице. Суть этого метода, как и метода, применявшегося на африканских рынках, заключалась в разложении чисел на разряды и неявном использовании свойства дистрибутивности, которое в те времена еще даже не имело названия. К примеру, чтобы умножить 285 на 43, между строками, где записывались числа, следовало оставить пустую строку для промежуточных расчетов. Следующие действия выполнялись в уме.

Поделиться:
Популярные книги

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Теневой путь. Шаг в тень

Мазуров Дмитрий
1. Теневой путь
Фантастика:
фэнтези
6.71
рейтинг книги
Теневой путь. Шаг в тень

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Проклятый Лекарь IV

Скабер Артемий
4. Каратель
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь IV

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Тринадцатый V

NikL
5. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый V

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2