Мир математики. т 40. Математическая планета. Путешествие вокруг света
Шрифт:
Значительная часть известной нам сегодня математики создана на основе традиций, заложенных Евклидом в его «Началах». Этот труд не просто сборник задач и решений. В нем описано математическое мышление, которое принималось за образец вплоть до середины XX века, пока Бертран Рассел не пошатнул сами его основы.
Критики «Начал» не согласны уже с первой строчкой трактата, где приводится определение точки как чего-то, что не имеет частей. Сегодня точка определяется как элемент аффинного, или топологического пространства. Рассмотрим подробнее критику первого предложения,
В предложении 1 описывается построение равностороннего треугольника на данном отрезке. Пусть дан отрезок АВ. Нужно построить с помощью циркуля окружность радиуса АВ с центром в точке А. Далее аналогично строится окружность с центром в точке В. Две построенные окружности пересекутся в точках Р и Q. Эти точки будут находиться на одинаковом расстоянии от А и В. Следовательно, треугольники АВР и ABQ равносторонние.
Критики отмечают, что в доказательстве используется аксиома о непрерывности линий, отсутствующая среди евклидовых постулатов. Если эта аксиома не выполняется, то построенные окружности необязательно пересекутся. Следовательно, «Начала» — это не исчерпывающий математический трактат, а продукт культуры, в котором изложены все известные на определенный момент времени знания, заимствованные из разных культур. Некоторые даже осмеливаются заявлять, что именно «Начала» научили нас мыслить математически. Однако математическая мысль вовсе не ограничивается триадой «аксиома — теорема — доказательство», она может принимать и другие формы. Несмотря на то что в «Началах» описывается ряд алгоритмов, в частности алгоритм вычисления наибольшего общего делителя двух натуральных чисел, нельзя сказать, что алгоритмы действительно составляют часть математической мысли, описанной в этом трактате. В разделе «Начал», посвященном алгебре, мы не встретим описания итеративных процессов, в которых последовательность приближений, найденных по определенному алгоритму, сходится к решению задачи. Эти идеи возникли позже и характерны для китайской, арабской и индийской культур. Евдокс, который, возможно, был современником Евклида, применил схожий подход в своих работах, которые, однако, не упоминаются в «Началах». Архимед, живший на 100 лет позже Евклида, вероятно, первым применил метод последовательных приближений для вычисления площади круга и получил самый точный результат своего времени. Понятие последовательности и ее сходимости спустя почти 2 тысячи лет дали начало анализу бесконечно малых. Возникает вопрос, как Евклид рассматривал анализ бесконечно малых: как процесс или как идею?
Бертран Рассел пошел дальше и заявил, что математика выводится из логики. Однако этот факт вовсе не означает, что логика — суть математики. Мы каждый день принимаем решения, которые можно обосновать при помощи логики, но не рассматриваем их как логические задачи. Мы принимаем решения с учетом множества факторов, и логика — лишь один из них. Мы очень часто опираемся на опыт, интуицию, аналогии, советы и бесчисленное множество других доводов, которые по истечении времени можно рационально обосновать. Но мы не всегда рассуждаем исключительно рационально. Так и математическая мысль и сама математика не сводятся к одной лишь логике.
Шульба-Сутры — единственный индийский математический текст ведического периода, то есть VIII–II веков до н. э. В нем приведены четкие методы построения алтарей квадратной или круглой
Одна из задач заключалась в построении алтаря площадью в два раза больше данного. Эту простую геометрическую задачу можно решить на глаз и в численном виде. Второй способ предпочтительнее, если мы хотим заранее определить, сколько материала потребуется на изготовление алтаря. Первым способом решение находится мгновенно: достаточно построить квадрат на диагонали исходного. Полученный квадрат будет содержать ровно четыре половины исходного квадрата.
Численное решение основано на применении теоремы Пифагора или определении числа, которое при возведении в квадрат дает 2. В самом деле, какова длина стороны квадрата х, площадь которого в два раза больше площади квадрата со стороной с? Посмотрим:
Шульба-Сутры также содержат описание алгоритмического метода вычисления квадратного корня из 2 путем последовательных приближений. Согласно этому методу, нужно добавить к длине стороны ее треть, затем — четвертую часть трети и, наконец, вычесть 30-ю часть четвертой части трети стороны. Иными словами, обозначив через с длину стороны квадрата, который нужно удвоить, имеем:
Выполнив указанные операции, вы увидите, что полученный результат — прекрасное приближение квадратного корня из 2 с точностью до пяти знаков после запятой:
Позднее, в XV веке, к этому числу были добавлены еще два члена, и в результате оно стало равняться корню из 2 с точностью до семи знаков:
Откуда взялись эти цифры и число 34, в Шульба-Сутрах ничего не сказано. В них, как и во многих других математических текстах, зафиксированы лишь ответы, а не пути к решениям. Существует гипотеза, согласно которой индийский алгоритм вычисления корня из 2 основан на методе, известном еще вавилонянам. Мы уже показали, что им удалось с удивительной точностью вычислить длину диагонали квадрата, но нам ничего не известно о том, какой метод они при этом использовали и был он алгебраическим или геометрическим.
Как математики воссоздают творческий процесс решения задачи? Нужно провести некий воображаемый путь, выбрав в качестве начала точку, к которой пришел тот, кто решил задачу. Если мы узнаем, о чем думал автор решения, зафиксированного в Шульба-Сутрах, указанные дроби и числа обретут смысл.
Среди наиболее вероятных объяснений — теория индийского математика Датты, жившего в первой трети XX века. Начнем с того, что приближенное значение корня из 2 получается при помощи числовой последовательности, которая начинается с единицы (такова длина стороны квадрата):
{1, 1,33333, 1,41467, 1,4142157, 1,4142135 } — > 2.
Длина стороны квадрата и его площадь равны единице. Так как на первом шаге мы прибавляем к единице одну треть, разделим квадрат на три равные части. Получим три прямоугольника. Обозначим два первых прямоугольника через А и В и разделим третий прямоугольник на три равные части. Каждая из этих частей будет представлять собой квадрат. Обозначим верхний квадрат через С и разделим два нижних на четыре части каждый. Получим рисунок.