Мир математики. т 40. Математическая планета. Путешествие вокруг света
Шрифт:
Результат, полученный по методу древних египтян, больше истинного всего на 0,6 %. Расхождение вызвано неявно используемым в этой формуле значением — это единственное отличие египетской формулы от современной. Некоторые историки высоко оценивают древний метод именно потому, что в нем фигурирует достаточно точное значение . Если мы сравним египетскую формулу с известной нам формулой площади круга, то увидим, что в ней соотношение между длиной окружности и ее диаметром, то есть , принимается равным 3,16:
Однако
По одной из гипотез, древние связывали площадь круга с площадью неправильного восьмиугольника, вписанного в квадрат стороной в 9 единиц.
Если мы хотим получить прямоугольную фигуру, по площади примерно равную кругу, то очевидно, что вписанный квадрат слишком мал, а описанный квадрат слишком велик. Среднее арифметическое площадей этих квадратов — не слишком точная оценка реальной площади круга, так как в ней число принимается равным 3. Между прочим, именно такое значение несколько веков использовалось в Древнем Египте и Месопотамии. Однако достаточно понаблюдать за тем, как колесо совершает полный оборот, чтобы убедиться: отношение длины окружности к ее диаметру очевидно больше 3.
Учитывая, что площади, в отличие от расстояний, нельзя измерить по земле, площадь круга можно оценить следующим образом: построить окружность, измерить ее длину, после чего вычислить ее по формуле и сравнить полученные результаты.
Какую формулу следует применить для расчета длины? Разумно ли принять длину окружности равной среднему арифметическому периметров вписанного и описанного квадрата? Возможно, да. Однако мы сталкиваемся еще с одной проблемой: найти периметр квадрата, вписанного в окружность, без теоремы Пифагора нельзя.
По одной из гипотез, египтяне принимали эквивалентным окружности неправильный восьмиугольник. Чтобы построить его, они делили стороны квадрата длиной в 9 единиц на три части каждую, для чего на сторонах квадрата отмечалось восемь точек. Далее эти точки соединялись линиями, и получался неправильный восьмиугольник, площадь которого визуально неотличима от площади круга.
Площадь круга равна 63,6 кв. ед. Площадь неправильного восьмиугольника отличается от нее менее чем на 1 %:
Sk =92 — 4·(1/2)·32 = 81–18 = 63 кв. ед.
Еще одна гипотеза изложена в задаче папируса Ахмеса под номером 50. В ней площадь круглого поля диаметром 9 единиц принимается равной площади квадрата со стороной в 8 единиц. Автор папируса указывает, что подтверждение этого соотношения приводится в задаче 48. Задача 48 сопровождается рисунком, на котором изображен неправильный многоугольник, вписанный в квадрат. В центре обеих фигур записана цифра 8. Однако рисунок неточен: вписанный многоугольник имеет не восемь, а всего семь сторон, при этом одна из его сторон не полностью совпадает со стороной квадрата. Но здесь важно другое: почему египтяне думали, что круг диаметром 9 единиц эквивалентен квадрату со стороной 8 единиц?
С точки зрения современного человека площади этих фигур действительно схожи:
S8 = ·4,52 = 63,617… кв. ед.
Их подобие нетрудно видеть на рисунке.
Sквадрата = 82 = 64 кв. ед.
Как считают Робинс и Шут, ответ на этот вопрос заключался в том, как диаметр окружности связывался со стороной квадрата. Если соединить вершину квадрата с серединой его стороны, получится прямоугольный треугольник с гипотенузой, равной 80. Это значение весьма схоже с диаметром окружности, равным 81 = 9.
Любопытно, что если мы примем длину гипотенузы прямоугольного треугольника со сторонами 8 и 4 равной не 80, а 9, то получим еще более точное значение площади круга (64 ближе к 63,617, чем 62,83):
Неверная длина гипотенузы: 82 = 64 кв. ед.
Точное значение: ·4,52 = 63,617… кв. ед.
Точная длина гипотенузы: ·(80/2)2 = 62,8318… кв. ед.
В любом случае ошибка будет меньше, если мы примем площадь круга диаметром 9 единиц равной 64 кв. ед., а не 63 кв. ед. (такова площадь неправильного восьмиугольника, рассмотренного ранее).
Неудивительно, что при решении этой задачи был выбран квадрат со стороной 9 единиц. Но почему именно 9? Если мы возьмем за основу квадрат со стороной в 3 единицы, то получим, что площадь восьмиугольника равна 7 кв. ед. Построить квадрат такой площади нельзя без использования иррациональных чисел. Площади квадратов со сторонами, например, 4 и 9 будут слишком далеки от реального значения. Возможно, для построения восьмиугольника египтяне брали за основу квадрат с длиной стороны, кратной 3. Но какое число, кратное 3, удобнее всего? Соотношение между площадью вписанного круга (Sо), площадью квадрата со стороной 3х и площадью вписанного неправильного восьмиугольника (S8) таково:
Чтобы построить квадрат, почти равный по площади восьмиугольнику, нужно найти число с такое, что с2 = 7х2. Для целых с это уравнение не имеет решений, однако можно найти приближенное значение с примерно = x7, например с = 8. Именно его использовали египтяне, получая очень близкие результаты: 7х2 = 63,с2 = 64.
Рей Пастор и Бабини считают, что египтяне вывели правило по результатам действий с дробными частями единицы. Так как требуется вычесть из диаметра его девятую часть, возникает вопрос: какую дробную часть диаметра вида 1/n, где n — натуральное, необходимо рассмотреть, чтобы найти длину стороны эквивалентного квадрата? Пусть диаметр окружности D = 1. Вычтем из него дробь 1/n и вычислим, каким должно быть значение n, чтобы при возведении этой разности в квадрат получалось число, близкое к площади круга с диаметром 1.