Мир математики. т 40. Математическая планета. Путешествие вокруг света
Шрифт:
Далее изложены вычисления, которые совершает в уме водитель ченнайского автобуса, чтобы найти произведение 3·293 и 3,30·61:
3·293 = 3·300 — (3·7) = 900 — 21 = 879.
3,50·61 = 3·61 + (1/2)·61 = 183 + 30,50 = 213,5.
Как видите, водитель не выполняет умножение напрямую и не применяет школьные методы, а упрощает исходные числа, чтобы легче считать в уме. В первом случае он округляет 293 до 300. Умножить 300 на 3 в уме несложно, но полученный результат больше правильного на величину, в три раза большую, чем допущенная погрешность в 7 единиц. Чтобы получить правильный ответ, нужно вычесть из 900 три раза по 7. Во втором случае десятичная дробь 3,50 раскладывается на целую и дробную части, то есть на три единицы и одну половину. Далее 61 умножается на 3 — получаем 183. Остается добавить к этому
Эти вычисления в уме доказывают, что водители прекрасно умеют не только представлять числа в виде суммы, но и на практике применяют известное в академическом мире свойство дистрибутивности умножения относительно сложения. Хотя водители получили начальное математическое образование и учились считать в уме в школе, в повседневной жизни они применяют народные методы, которые отличаются от академических.
Разделение десятичной дроби на целую и дробную часть при умножении часто используется, когда нужно произвести вычисления в уме. Этот народный метод не изучается в школах, но встречается в разных частях света.
* * *
ВЫЧИСЛЕНИЕ КВАДРАТОВ В УМЕ
Так как (n ± 1)2 — n2 ± 2n + 1, квадрат целого числа можно вычислить в уме, зная квадрат предыдущего или следующего числа:
312 = 302 + 2·30 +1 = 900 + 60 + 1 — 961.
192 = 202 – 2·20 + 1 = 400 — 40 + 1 = 439.
Так как n2 = а2 + n2 — а2 = а2 + (n + а)·(n — а), квадрат целого числа также можно определить через произведение его суммы и разности с другими числами, которое несложно вычислить:
192 = 1 + (192 – 12) = 1 + (19+1)·(19-1) = 1 + 20·18 = 1 + 360 = 361.
372 = 9 + (372– З2) = 9 + (37 + 3)·(37 — 3) = 9 + 40·34 = 9 + 40·(30 + 4) = 9 + 40·30 + 40·4 = 9 + 1200 + 160 = 1369.
* * *
Торг был и остается общепринятой торговой практикой. Хотя в западном мире он практически ушел в прошлое, в других регионах торг по-прежнему сохраняется на традиционных рынках и в излюбленных туристами местах.
Цель торга — прийти к соглашению относительно цены, которая устроит и продавца, и покупателя. Как правило, торг начинает продавец: он называет цену, которую должен заплатить покупатель. Часть игры заключается в том, что изначальная цена всегда завышена (порой — слишком завышена), и покупатель должен в ответ назвать другую, более низкую цену. При этом он не должен сбивать ее слишком сильно, чтобы продавец не почувствовал себя оскорбленным и не потерял интерес к покупателю.
Неписанное правило торга на традиционных рынках заключается в том, что справедливой ценой можно считать цену, равную половине первоначальной. Но это правило выполняется не всегда — порой продавец сам приглашает покупателя назвать цену первым.
Чаще всего цена при торге меняется на некоторую фиксированную величину, но покупатель и продавец могут договориться о скидке в процентах. Если покупателю предложили скидку в 5 %, ему не следует ожидать, что он сможет выторговать скидку в 50 %, то есть приобрести товар за полцены. В этом случае торг можно считать успешным, если покупателю удается удвоить названную скидку, то есть сбавить 10 % от цены. Скидки обычно предлагаются на довольно дорогие товары, так что даже небольшое изменение цены в процентном отношении предполагает существенную экономию, поэтому такой вид торга встречается не очень часто.
Наиболее простая математическая модель торга — это линейная модель. В ней цены, предлагаемые продавцом и покупателем, изменяются пропорционально. При всей своей простоте эта модель неточна: в реальной жизни предлагаемые цены увеличиваются и уменьшаются неравномерно, и по мере
Более точной кажется модель, в которой графики изменения цены представляют собой кривые. Кривая цены, предлагаемой покупателем, С(х), будет возрастающей и выпуклой. Это означает, что покупатель будет называть все большую цену, увеличивая ее все меньше и меньше. К примеру, последовательность значений 20, 60, 100 и 140 соответствует первой, линейной модели, последовательность 20, 50, 70 и 75 — второй модели. Значения в этой последовательности возрастают, но разница между ними становится все меньше. Кривая продавца, V(x), напротив, будет убывающей, и разница между последовательными значениями также будет убывать.
Если считать, что результатом увеличения С(х) и уменьшения V(x) будет итоговая цена, получим параболические кривые, так как увеличение и уменьшение будут описываться производными исходных функций, V'(х) и С'(х). В случае с кривой покупателя производная положительна (С(х) возрастает), в случае с кривой продавца — отрицательна (V(х) убывает):
V(0) = В — начальная цена, предложенная продавцом. В результате получим две параболы разной кривизны, которые пересекаются в точке равновесия.
Однако мы не знаем, действительно ли участники торга рассуждают подобным образом. Быть может, они думают, что цену следует повышать или понижать обратно пропорционально разнице с исходной ценой? Если это так, то мы получим новую модель, в которой поведение продавца и покупателя описывается логарифмическими функциями — именно эти функции являются решениями дифференциального уравнения модели. Обозначив через V исходную цену, получим:
Постоянная k для покупателя положительна, для продавца — отрицательна.
Но на самом деле люди, предлагая свою цену, не вычисляют в уме подобные пропорциональные величины. Рассмотрим реальные данные, собранные автором по результатам торга с тремя продавцами, чей доход напрямую зависел от туристов.
Во всех трех случаях мы находились не на рынке, а в магазине. Я предлагал цену, не учитывая какие-то заранее обдуманные пропорции или соотношения. Ход моих рассуждений я объясню позже.
В третьем случае цены товаров были указаны на ценниках, что, как правило, служит признаком фиксированной стоимости. В моем случае цена, написанная на ценнике, равнялась 350. Не успел я спросить, действительно ли это окончательная цена, как продавщица сказала, что может сделать мне скидку.
«Какой будет скидка?» — спросил я. «Отдам за 300» — ответила продавщица.
Скидка была не слишком большой, и я понял: цены на ценниках были не окончательными, но достаточно близкими к реальным. В любом случае вещь не досталась бы мне очень дешево. Теперь настала моя очередь предложить цену. Цены ниже 200 показались мне слишком низкими, поэтому я предложил 200. Продавщица согласилась на 280. Ее предложение несколько охладило мой пыл — новая цена была всего на 20 меньше предыдущей. Я предположил, что в итоге мы сойдемся на 250, но не хотел завершать торг слишком быстро. Я предложил 230 — чуть больше, чем 225.