Моделирование рассуждений. Опыт анализа мыслительных актов
Шрифт:
Теперь можно применить второе преобразование из F7:
Четвертое преобразование из F7 приводит к окончательному результату
Пример, конечно, не отражает всех особенностей работы программы «Логик-теоретик». Мы несколько упростили задачу. Как видно из таблицы различий, выбор преобразования на каждом
Исчисление предикатов
Исчисление высказываний не позволяет описывать дедуктивные рассуждения всех типов, в частности силлогистические умозаключения. Оно слишком бедно выразительными средствами.
Его естественным развитием является исчисление предикатов. Как и исчисление высказываний, исчисление предикатов представляет собой формальную систему. Мы не будем описывать его в такой строгой форме (любители строгости могут найти подобные описания в литературе к данному разделу), а попытаемся оставаться на содержательном уровне описания.
Под предикатом будем понимать некоторую связь, заданную на наборе из констант или переменных, например утверждение « больше ». Если семантика и не задана, то о предикате сказать особенно нечего. Пожалуй, только то, что он задает двуместное отношение, семантика которого такова, что оно является антирефлексивным (неверно, что « больше »), асимметричным и транзитивным. Но при задании семантики (т.е. областей определения переменных и ) о предикате можно будет сказать существенно больше. Если и – площади городов соответственно в СССР и Японии, то при задании списков городов и означивании переменных константами мы получим отношение между двумя высказываниями типа «Площадь Вологды больше площади Токио» или «Площадь Ленинграда больше площади Нары». После этого становится возможным говорить об истинности или ложности предиката. Для нашего примера первое означивание дает ложное значение предиката, а второе – истинное. Иногда для утверждения об истинности или ложности предиката можно обойтись и без означивания. Например, если областью определения х являются целые положительные числа, то предикат «х больше -5» будет тождественно истинен.
В исчислении предикатов используются те же операции, что и в исчислении высказываний. С их помощью образуются предикатные формулы. Будем обозначать предикаты большими латинскими буквами. Примерами предикатных формул могут служить Р(х,у)&Q(a,b) или
В исчислении предикатов используются два квантора: квантор общности и квантор существования. Первый обозначается как
Вспомним
А вот Ф. Тютчев: «Бывают роковые дни лютейшего телесного недуга и страшных нравственных тревог…». Если Q(u,v) есть предикат, в котором переменная u определена на множестве дней, а переменная v на области настроений, связанных с «телесным недугом» и «страшными нравственными тревогами», то в исчислении предикатов началу стихотворения Тютчева будет соответствовать формула
Отметим, что имеют место следующие соотношения:
Справедливость их вытекает из смысла кванторов. Они позволяют любую формулу в исчислении предикатов представить в виде предваренной нормальной формы (ПНФ). В ней сначала выписываются все кванторы, а затем предикатные выражения. Например, формула
записана в ПНФ.
Введение кванторов
На первый взгляд такая замена вполне законна. Но для того, чтобы убедиться в этом, необходимо показать, что в исчислении предикатов могут быть выведены все модусы силлогистики Аристотеля.
Система аксиом и правила вывода в исчислении предикатов могут быть заданы следующим образом. В качестве системы аксиом берется любая известная система аксиом исчисления высказываний и к ней добавляются специфические для исчисления предикатов аксиомы, например, такие:
Смысл их очевиден. Первая аксиома говорит о том, что если Р(х) истинен для любых х, то и для некоторого у из того же универсума истинность предиката должна сохраняться. Вторая аксиома говорит о том, что если найдется такое у, что Р(у) будет истинным, то верно, что существует х, для которого Р(х) истинно.