Чтение онлайн

на главную

Жанры

Шрифт:

Тогда попробуем подойти к проблеме научно, используя все, чему учит кибернетика, и, в частности, сохраняя характерную для мультинода избыточность и гибкость, которые делают его столь мощным инструментом выработки правильных ответов. Ниже следует такой кибернетический план.

Первая трудность в том, чтобы установить, какого типа проблемы мультинод действительно решает. Ни сам он, ни установленное им старшинство, ни власть не предназначены для определения тривиальных результатов — он не обязан этим заниматься. Более всего он нужен для выработки весьма ответственных планов (стратегических) и, следовательно, решения весьма сложных проблем. Дело в том, что люди представляют себе обдумывание как процесс синтезирования общего, но всестороннего заключения, основанного на большом числе компонентов. Решение видится как красивое нагромождение одного юридического условия на другое. Вот почему, вероятно, всякий,

кто пытается провести "согласованное" решение, сталкивается с бесконечной проблемой переписывания проекта такого документа.

В кибернетике подход иной. Результат процесса обдумывания — решение — принимает следующую форму: делать только так (а не как-нибудь иначе). Как только начинается процесс обдумывания, мультинод сталкивается не с определенным числом строительных блоков, а с кажущейся бесконечностью возможных решений, из которых нужно сделать выбор. Именно изобилие возможностей "кричит" и требует решения прежде всего. Затем, в соответствии с нашей моделью, процесс, которому мы стараемся содействовать, сведется к "отсечению" двухсмысленностей и неопределенностей, продолжающемуся до тех пор, когда можно будет сказать: "делать только так". Короче говоря, мы хотим измерять разнообразие комплексных решений с самого начала, измерять уменьшение разнообразия, вызванное каждым заключением, к которому мы приходим к процессе обдумывания, и в общем руководить всеми операциями мультинода до тех пор, пока разнообразие не сведется к единственному — самому решению. Чтобы сделать это, нам потребуется два инструмента: парадигма логического поиска и средства измерения — правило и мера — для измерения неуверенности.

Парадигма логического поиска

Парадигма — это образец; в нашем случае — образец фундаментального подхода к решению определенной общей проблемы, который может быть полезен для множества различных ситуаций. Конечно, существует много путей проведения поиска, но в случае поиска решения люди обычно приближаются к нему последовательно." Что, — спрашивают они, — прежде всего надо решить? Что решать после этого?" Заметим, что инструмент, разработанный к настоящему времени наукой управления в помощь подготовке комплексных решений, полагается на последовательность логических приоритетов. Парадигмой этого метода поиска является дерево решений. (Предпринять это в США, Великобритании или Франции? Ответ: Во Франции. Предпринять это в Париже, Лионе или Марселе? Ответ: В Париже. И так далее.)

Созданное нами понимание возможности мультинода свидетельствует, что такая парадигма — не то, чего мы хотим. Конечно, помощники-ученые могут попытаться логически определить первостепенные задачи и пытаться также склонить мультинод рассматривать их первыми. Обычно он этого не делает, не может или не станет делать. У мультинода свои методы. Кроме того, кто скажет, что на самом деле приоритетно? Подобное решение само по себе относится к числу тех, которые мы назвали "политическими". Нет, мы должны придерживаться нашего понимания мультинода — его избыточности, гибкости и свободы. Наша поисковая парадигма должна быть свободна от приоритетов. Иначе мы станем диктовать мультиноду, как ему работать совершенно не подходящим образом.

Простой пример процедуры поиска возникает при отыскании определенного пункта на карте. Карты разделены на квадраты, и можно считать, что масштаб и сетка взаимосвязаны так, что если мы попадем в нужный квадрат, то там и найдем нужный пункт. Рассмотрим тогда карту, разделенную на части через равные расстояния по обеим осям так, чтобы получилось по 1000 квадратов в каждом направлении. Это должно означать, что на карте теперь сетка с 1 000 000 квадратов. В нашем распоряжении две парадигмы для осуществления поиска. Ясно, что по окончании этой длительной процедуры мы можем сказать: "Разыскиваемый нами пункт находится в квадрате номер 342756”. Такой метод действительно срабатывает как подчиняющийся закону необходимого разнообразия. Мы определили нашу задачу в виде множества 1 000 000 и теперь предложили рассмотреть поиск в миллионном множестве. Но, как каждый школьник знает, есть парадигма, лучшая, чем эта. Он предложит пронумеровать квадраты по горизонтальной и вертикальной осям и определять каждый квадрат с помощью таких координат.

Эта вторая парадигма точно определяет генератор разнообразия. Поскольку можно записать 1000 + 1000=2000, мы в состоянии получить их произведение 1 000 000 — как общее разнообразие. Проблема размещения пункта и его поиска теперь уменьшена

с разнообразия 1 000 000 до разнообразия 2000. Так произошло, поскольку мы прибегли к двумерному логическому пространству.

Что касается самого поиска, мы не знаем, сколько квадратов сетки нам придется проверить, прежде чем найдем нужный. При первой парадигме с разнообразием 1 000 000 можно попасть в цель как в самом первом квадрате, так, с другой стороны, и в самом последнем. Тогда мы заявляем, что в общем средняя длина поиска составляет половину миллиона квадратов. При второй парадигме мы вначале определяем номер квадрата по горизонтали, а затем по вертикали; этот процесс в среднем потребует 500 + 500 операций проверки, а всего 1000. Говоря математически, первый способ поиска требует числа шагов, эквивалентного половине общего множества (500 000), в то время как второй путь требует числа шагов, равного половине двух корней квадратных из общего множества:

2( V )^1/2/2 = V1/2.

Вторая парадигма очень мощная, поскольку является генератором разнообразия. Именно такой подход мы будем использовать. В аналогичных проблемах, перед которыми мы стоим, мы не имеем дела с двумерной картой. Мы имеем дело с задачами, сформулированными в многомерном логическом пространстве. Иначе говоря, размерность решения не просто "север-юг, восток-запад", здесь столько логических вариантов, сколько их может быть в самой проблеме. Любое серьезное решение в промышленности обычно увязывается с такими вещами, как производство, сбыт, финансы, персонал, научно-исследовательские и опытно-конструкторские работы... Именно они определяют размерность проблемы, поскольку решение, по определению, является условием существования. Тогда можно сказать, что в общем размерность любой проблемы, достойной мультинода, есть п-размерность (и можно заметить наперед, что п не менее 5 и не более чем, скажем, 20).

Для п > 1 вторая парадигма оказывается более мощной, чем нам представлялось до сих пор. Вспомним, что общее разнообразие определяется перемножением множества разнообразий. Так, в случае карты, разнообразие по каждому из двух измерений составляло 1000, что дало в результате общее множество 1 000 000. Если бы оно распространилось на трехмерную структуру, то общее множество составило бы тогда 1 000 000 000. В общем, для случаев принятия решения суммарное разнообразие равно произведению разнообразия по одному типичному размеру на число других размеров а средняя длина поиска в соответствии с первой парадигмой составляет половину этого числа. Оно обязано быть гигантским. В случае избранной нами парадигмы, однако, средний поиск составит половину числа разнообразия, умноженного на корень n-й степени из общего разнообразия. Все это простое обобщение примера с "картой" для n-мерного пространства. Записанная математически длина поиска будет равна:

(n/2)V1/n.

Сделанный нами вывод в высшей мере важен. Прежде всего расчет подсказывает, что в случае карты, которая, как известно, двумерна, для достижения цели вместо половины миллиона шагов (первая парадигма) потребуется в среднем всего тысяча шагов (вторая парадигма). Это представляет колоссальное увеличение эффективности подготовки решения, поскольку предпринимаемые нами усилия теперь составляют одну пятую процента по сравнению с первым методом. Когда число измерений, учитываемых при решении проблемы, возрастает с двух до п, возрастание эффективности становится астрономическим.

Следовательно, в модели, создаваемой для подготовки сложного решения, должны быть прежде всего учтены п логических измерении, а также обозначены пути взаимной связи между ними. Модель не должна точно указывать последовательность решений, которая будет установлена самим мультинодом, как бы мы не пытались ему ее навязывать. Дело в том, что мультинод, начав работать и придя к некотором предварительным заключениям — сколь угодно "несущественным",- будет еще определять размерность пространства Так происходит потому, что определение нужной точки в каком-то одном измерении сильно ограничивает возможности мультинода одновременно определять ее местоположение в других. Если это интуитивно не понятно, представим себе еще раз нашу карту. Разыскивая город по одному измерению, мы определяем, что он лежит на определенной широте. При взгляде на карту выясняется, что (возможно) половина ее длины приходится на море. Этот факт ограничивает наш поиск по шкале широты. Как этот факт, существенно усиленный n-мерностыо подготовки решения реальной проблемы, учитывается нашей моделью мультинода, полностью прояснится, когда мы рассмотрим учебный пример.

Поделиться:
Популярные книги

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Последний рейд

Сай Ярослав
5. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Последний рейд

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Серые сутки

Сай Ярослав
4. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Серые сутки

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III