Мозг Фирмы
Шрифт:
FR*PM, 2)
RD*(PF.S*D*PF), 3b)
MF * RD . 4)
Проверка оператора (Е) подсказывает, что (1b) и (3b) можно объединить, поскольку их правые части почти эквивалентны. Чтобы сделать их такими, следует вынести R из (1b) и Р из (3b) и записать эти две переменные в левой части импликации:
(PM* R) (RD* P)] • (F.S* D* PF).
Сделав такой шаг, мы произвели перегруппировку и -перегиездование. Мы поступили так, поскольку нет единственного способа формулирования сложных логических проблем, во всяком случае не более, чем для множества уравнений в математике. В алгебре есть способы-манипулирования, а критерием успеха является соответствие результата. Разность а^2 — b^2 может быть подходящим способом выражения разности площадей двух квадратов, тогда как произведение (а + b ) ( a — b) может
Все пока сделано хорошо, поскольку мы избавились от половины первоначальных высказываний. У нас осталось одно полное высказывание, показывающее зависимости в групповой и гнездовой форме, и два первичных высказывания из оператора (С), а именно: (2) и (4). Теперь обратим внимание на них:
FR*PM (2)
MF*RD (4)
Поскольку общим в обеих зависимостях является наличие F в первой группе, было бы, вероятно, желательно записать их в виде F * PMRD (сопоставьте с оператором (А))
F*PD (M*RD) (R*PM), (2 а )
а затем переписать как
F*[PD.M*(DP*PM)]. (2Ь)
Это выражение можно ввести в правую часть выражения (1с), но мы не можем пренебрегать высказываниями (2) и (4), т. е. M * RD и R * PM , поскольку они ранее фигурировали в левой части выражения (1с). Из множества путей их объединения наиболее удобным кажется следующий: переписать ( PM * R ) как ( PM * R ) ( M * D ), поскольку M * PD , и ( RD * P ) как R * PM )( D * P ), поскольку R * PM . Тогда левая часть выражения (1с) сведется к выражению
[(PM*RPM) (M*D*P)].
Продолжая тем же способом, получаем:
Окончательный оператор (F)
[ (PM*R*PM) (M*D*P) ] * [F* [PD.M*(D.R*PM) ] S*D*Pf].
В окончательном операторе символ F выделен полужирным шрифтом. Это утверждение используется, чтобы показать, что полное перечисление его последствий здесь опущено. Логика, конечно, приведет вновь к операторам, предшествующим F.
Ранее отмечалось наличие многих логически эквивалентных путей написания этого полного выражения. Что мы выиграли от того, что записали одно из них в столь сложной форме? Вопрос вполне правомерен, поскольку общее выражение можно было бы (на языке логики) сильно сжать. Ответ в том, что мы стремились к пониманию системы логических решений и к предоставлению возможности самостоятельно рассмотреть множество подходов к решению, поскольку мультинод может выбирать любой путь, который ему предпочтителен. _
Предположим, что уже почти принято решение, касающееся планов сбыта. Один из восьми рассмотренных при этом планов начинает выглядеть непривлекательным и исключается. Тогда мы обращаемся к оператору (F) слева и — смотрим на D. Согласно первому правилу мы должны рассмотреть влияние этого решения на Р. Дальше мы замечаем, что это же решение влияет на F, и далее рассмотрение должно распространиться на М (фактор Р уже был рассмотрен, а D оказался избыточным). Рассмотрение М включает его влияние на фактор R, в свою очередь влияющий как на Р, так и на М Далее, F означает также обдумывание в отношении фактора S , который прямо влияет на D, о котором и идет речь, а последний влияет на Р и F, о чем мы уже знаем Такова будет интерпретация системы, если она начинается с D. Попытайтесь теперь сформулировать разумные правила для проверки влияния решения относительно D исходя из первой таблицы — оператора (А). Новое обращение к переменным быстро приведет Вас к неразрешимым узлам противоречий. Попытайтесь изобразить все это графически — график быстро станет выглядеть как запутанный котенком клубок ниток. Мы снова оказываемся в плену растущего многообразия.
Итак алгебра решений дала нам уже полезное руководство, но наша действительная цель состояла в том, чтобы создать полезную метрику-измеритель решения. Тогда для этой цели мы обязаны записать наш оператор (F) полностью, иначе говоря, мы обязаны показать варианты. Фактор Р имеет четыре составляющие возможные заводские стратегии. Тогда там, где в операторе ( F ) присутствует Р. следует писать
Р(р1, р2, р3, p4) и т. д.
Давайте теперь вернемся к рассмотрению D или, как мы условились, представим его в виде D ( d 1, d 2, d 3, d 4, d 5, d 6, d7, d 8). В соответствии с нашим примером один из этих планов отпал — таково было решение. Первое заключение тогда состоит в том, что разнообразие D уменьшено с 8 до 7, т. е. с 3 до 2,8 бит. Это означает, что общая неопределенность уменьшилась на 0,2 бита. Назовем ее явным
Все это означает, что в процессе уменьшения общей неопределенности в 17 бит всего навсего на 0,2 бит, т. е. при исключении варианта dg, первоначальная неопределенность для Р уменьшается на 1 бит. Но мы показали, что все это сказывается и на F И в самом деле, планы движения денег f „ f -, L и f, связаны (как выяснилось) с реализацией стратегий производства 2 и 4. Разнообразие вариантов для F снизилось при этом с 8 (3 бита) до 4 (2 бита) — еще одно уменьшение неопределенности на 1 бит. Логика заставляет нас рассмотреть влияние всего этого на переменную М. Теперь если нельзя рассчитывать на распространение нашего товара в отдаленных регионах (d8), то это, без сомнения, означает изменение стратегии сбыта. Конечно, следовало бы оо этом подумать сразу. Если так, то как же следовало бы воспринимать решение об исключении d 8 до обсуждения рассмотрения стратегии М? Кто принял это решение, да и было ли оно правильным? Это именно те вопросы, которые наш метод управления побуждает нас ставить, ставить быстро и без обиняков.
Допустим такую возможность, что в конце концов полностью возобладает решение d 8. To гд a большинство рыночных стратегий, в которых столько внимания отводилось проблеме торговли в отдаленных регионах, может стать неуместным. Предположим что пять из них исключаются. Тогда останется три, т. е. неопределенность составит всего 1 ,58 бита. Это говорит о том, что пришло время рассмотреть R . Для этой переменной, как ни странно, ничего не изменилось. Рассмотрение нашего сценария как выяснилось, никак не влияет на характер нашего товара. В таком случае влияние R на Р и М не вызывает других последствий. Однако маршрут ( D * P )* F * S по-прежнему требует рассмотрения. Здесь S, и S- как две кадровые стратегии, зависящие от этой цепочки, теперь отпадают как ненужные (легко догадаться, почему). Тогда неопределенность уменьшается еще на 1 бит. Но это влияет на D .
На первый взгляд цикл полностью завершен. Конечно, мы начали с рассмотрения D.. Это верно, но мы, в частности, начали с исключения d8. А что будет с d 2, d 4 и d 7 Оказалось (и это весьма правдоподобно), что последовательное исключение пяти стратегий сбыта и двух видов кадровой политики (как следствия отказа от do ), действуя на и, приводит к исключению и этих планов сбыта. Последнее, как мы знаем логически воздействует на Р и F. К счастью, в данном примере (заметим для самооправдания) на производственных стратегиях данное воздействие далее не сказывается — хотя, упаси боже, в принципе могло бы сказаться. Но на Р действительно сказывается последовательное сокращение разнообразия F было вначале вызвано отказом от двух производственных стратегий. Теперь же, когда отпали еще три стратегии сбыта потерял смысл и план f 5, как обслуживающий их нужды. Теперь обратимся к последнему оператору F , ставшему весьма важной составляющей. Нам вновь предстоит просмотреть все аргументы, начиная с первого появления F, поскольку число разнообразий этих планов теперь снизилось до трех (1,58 бит).
Кто-то сказал, что d8 исключается, и с этим все согласились. Неопределенность принятия решения всей цепи решений претерпела уменьшение вследствие незначительного уменьшения ее вначале на 0,2 бита. Теперь вновь рассмотрим все "поле боя" и определим реальную эффективность этого решения:
D — начальная неопределенность 3 бита уменьшена до 2,8 бит (явно);
Р — начальная неопределенность 2 бита уменьшена до 1 бита (последовательно);
F — начальная неопределенность 3 бита уменьшена до 2 бит (последовательно);