Начертательная геометрия: конспект лекций
Шрифт:
В данном построении основным моментом решения является проведение вспомогательной плоскости Q, проходящей через данную прямую. Можно провести вспомогательную плоскость общего положения. Однако показать на эпюре проецирующую плоскость, используя данную прямую, проще, чем провести плоскость общего положения. При этом через любую прямую можно провести проецирующую плоскость. На основании этого вспомогательная плоскость выбирается проецирующей.
4. Прямая, перпендикулярная плоскости
Прямая и плоскость перпендикулярны, если на плоскости можно найти две пересекающиеся прямые, перпендикулярные исходной прямой. В качестве
Итак, признак перпендикулярности можно задать, используя прямую и плоскость на эпюре.
Прямая является перпендикулярной плоскости, когда проекции прямой перпендикулярны одноименным следам плоскости.
Лекция № 6. Проекции геометрических тел
1. Призма и пирамида
Рассмотрим прямую призму, которая стоит на горизонтальной плоскости (рис. 56).
Ее боковые грани являются частями горизонтально-проецирующих плоскостей, а ребра являются отрезками вертикальных прямых. Исходя из этого ребра следует проецировать на горизонтальную плоскость в виде точек, а на фронтальную плоскость – без искажения (AA = aa1 и т. д.).
Нижнее основание призмы ABC находится в горизонтальной плоскости, поэтому ее можно изобразить на этой плоскости без искажения: ABC = abc. Фронтальная проекция пирамиды аbс совпадает с осью х.
Оба основания дают одинаковые горизонтальные проекции (abc = a1b1c1). Верхнее основание A1B1C1 параллельно горизонтальной плоскости, т. е. его фронтальная проекция а1b1с1 параллельна оси х.
При рассмотрении призмы сверху (рис. 57) будет видно только верхнее основание призмы.
Горизонтальные проекции трех точек, которые лежат на нижнем основании, помещены в скобки с целью показа, того, что точки А, В и С
Для определения невидимых элементов на фронтальной проекции обращаются к горизонтальной проекции.
Направление луча зрения показано на рисунке 58 стрелкой. Видно, что грань AA1C1С при таком угле зрения будет невидимой.
На рисунке 58 показана треугольная пирамида, которая находится на горизонтальной плоскости.
Гранями пирамиды являются треугольники, являющиеся частями плоскостей общего положения.
Если рассматривать пирамиду сверху, можно увидеть всю ее боковую поверхность, т. е. для горизонтальной проекции не существует невидимых элементов.
Из рассуждений, подобных рассуждениям в случае призмы, можно убедиться, что на фронтальной проекции невидима грань SAC (рис. 59).
3. Цилиндр и конус
Цилиндр – это фигура, поверхность которого получается вращением прямой m вокруг оси i, расположенной в одной плоскости с этой прямой. В случае, когда прямая m направлена параллельно оси вращения, получается цилиндр (рис. 60), когда она пересекает ось вращения, полученная фигура будет являться конусом (рис. 61).
Прямой круговой цилиндр имеет образующие, направленные перпендикулярно горизонтальной плоскости (рис. 61). По этой причине вне зависимости от выбора точки N на его поверхности горизонтальная проекция n этой точки находится на основании цилиндра.
Основание цилиндра составляет линию пересечения боковой поверхности цилиндра с горизонтальной плоскостью, т. е. это горизонтальный след поверхности цилиндра. Следовательно, боковая поверхность прямого кругового цилиндра, который стоит на горизонтальной плоскости, рассматривается как горизонтально-проецирующая поверхность по отношению к любой линии, начерченной на его поверхности.
На рисунке 63 показаны проекции цилиндра.
Фронтальная проекция аа1, которая образует АА1, ограничивает слева фронтальную проекцию цилиндра, т. е. является ее контурной образующей. На профильной плоскости ее проекция а"а"1располагается на оси симметрии этой проекции. Профильная проекция d"d"1образующей DD1 является контурной, а ее фронтальная проекция dd1 находится на оси симметрии и т. д.