Чтение онлайн

на главную

Жанры

Нанонауки. Невидимая революция
Шрифт:

Патрик Линстед привлек к своим исследованиям одного молодого ученого по имени Джон Робертсон, который после долгих вычислений выяснил, как устроен кристалл, состоящий из молекул фталоцианина меди, и понял, как построена сама молекула: это квадраты со стороной 1,3 нм.

ФТАЛОЦИАНИН МЕДИ НА ФОТОГРАФИИ

Работа всех нынешних электронных микроскопов основана на одном принципе. Металлическая, очень тонкая игла подводится к металлической пластинке. Если между иглой и пластинкой приложено электрическое напряжение достаточной величины, с иглы будут стекать электроны. И тогда то, что происходит в этом пространстве, будет зависеть от расстояния между иглой и пластинкой.

В 1930-е годы были изобретены «эмиссионно-полевой

микроскоп» (или «автоэлектронный микроскоп») и «электронный микроскоп». И разгорелось ожесточенное и затяжное сражение между коллективами ученых, работающих с этими приборами. Воевали за первенство: кто кого опередит в соревновании за достижение атомного разрешения, то есть за выведение на экран изображения атома. В конце 1960-х годов один из отцов электронной микроскопии во Франции Гастон Дюпуи, выступая перед академическим собранием, заявлял: «Моя цель — увидеть сами атомы». Но впервые эту цель себе поставили — и гораздо раньше — два молодых немца, работавшие в лабораториях фирмы Telefunken(позднее — Siemens),звали их Эрвин Мюллер и Эрнст Руска.

Эрвин Мюллер всегда отличался любопытством и упрямством. И вот однажды он вознамерился доказать, да так, чтобы никто не посмел усомниться, что пучок электронов, излучаемых из некоторой точки, содержит информацию о расположении атомов в этой точке. Установив на достаточном удалении от этой самой точки люминесцентный экран, он надеялся получить увеличенную светящуюся проекцию расположения атомов — подобно тому, как высвечиваются силуэты в китайском театре теней. Чтобы проверить свою догадку, Мюллер придумал в 1936 году автоэлектронный микроскоп. Увы! Как он ни старался, получить изображение атомов не удавалось. Но однажды — это случилось уже в 1951 году — он пришел в лабораторию, и все у него с самого начала пошло наперекосяк: внутрь ограждения, где находилась установка, попало небольшое количество водорода. Загрязнение! А сам экспериментатор невзначай поменял полярность напряжения между иглой и пластинкой. И на кончике иглы появились ионы водорода. То есть пучок заряженных частиц теперь состоял не из электронов, а, пусть отчасти, из ионов водорода. И, попав на люминесцентный экран, они нарисовали… схему расположения атомов!

Мюллер продолжил свои эксперименты с более тяжелыми газами, выбирая те, что не так, как водород, охотно вступают в химические реакции, например гелий или неон, старательно подбирая при этом вольфрамовую иглу, и в конце концов добился того, что на экране появилось изображение тех атомов вольфрама, которые попали на кончик иглы. Таким образом Эрвин Мюллер первым получил изображение одиночного атома. Случилось это в 1955 году. А в 1991-м человек впервые сумел сдвинуть атом с места — иглой туннельного микроскопа. Это был Дон Эйглер, исследователь, работавший на IBMв Калифорнии. Но это уже совсем другая история, о которой рассказывалось в главе 3.

О том, что случилось после описанных опытов Мюллера, знают куда меньше. А ведь и он ввел, по своей воле или еще как — кто знает? — в эксперименты толику фталоцианина меди. На кончике иглы поместилось несколько молекул. На экране возникло знакомое изображение атомов вольфрама, но появились и какие-то странные пятнышки: каждое такое облачко делилось на четыре симметричные дольки. Расстояние между двумя атомами вольфрама на кончике иглы известно, значит, оно годится на роль эталона для определения размеров долек. Мюллер сравнил вычисленные значения с величинами расстояний, полученными Робертсоном с помощью дифракции рентгеновских лучей, — все сходилось! Так Эрвин Мюллер получил в 1957 году первое изображение одиночной молекулы ( рис. 2). А фталоцианин меди еще раз выступил в качестве предмета и повода научной премьеры.

Рис. 2. Полученное на экране автоэлектронного микроскопа изображение нескольких молекул фталоцианина меди, расположившихся на вольфрамовой игле. Это изображение Э. Мюллер получил в 1957 году, работая в своей лаборатории при университете штата Пенсильвания. Каждая молекула выглядит как крестик с четырьмя четко различимыми дольками. Здесь воспроизводится фотография С люминесцентного экрана. использованного Э. Мюллером, на который проецировались электроны, излучаемые вольфрамовым острием и частично проходящие через молекулы

Затем Мюллер получил множество изображений иных молекул. В то время автоэлектронный микроскоп (эмиссионно-полевой микроскоп) лет на пятнадцать опережал своего соперника, которым был микроскоп электронный. Но эта техника — лишь вынужденная необходимость для некоторых предельных условий, складывающихся в определенных электрических полях и при определенных давлениях. Кроме того, автоэлектронный микроскоп не дает такого четкого представления об атомных структурах молекул, как установки с рентгеновскими лучами или электронный микроскоп. В наши дни используется автоионный (ионно-полевой) микроскоп для определения характеристик структуры игл на атомном уровне, что важно в работе с туннельным микроскопом.

РОЖДЕНИЕ ЭЛЕКТРОННОГО МИКРОСКОПА

В начале 1930-х годов инженер Берлинского университета Эрнст Руска получил задание определить параметры, необходимые для контроля диаметра пятна, образованного пучком электронов, пропущенным через отверстие в металлической пластинке. Поначалу он решил воспользоваться соленоидом (тороидальной катушкой, которая, если по ее виткам течет электрический ток, действует как магнит), полагая, что соленоид сможет менять диаметр пучка электронов так, как линза фокусирует проходящие через нее лучи света. Затем он подумал, что аналогия между электронами и видимым светом сулит много больше, и построил просвечивающий микроскоп из источника электронов, соленоида и проекционного экрана (все это, понятно, было помещено в вакуум). Потом он поместил между соленоидом и экраном небольшой предмет — и соленоид повел себя на манер линзы в оптическом микроскопе. Так Руска получил увеличение в 14,4 раза и — изобрел электронный микроскоп.

Памятуя о теоретических ограничениях возможностей получения изображений с помощью света, Руска в глубине души надеялся, что электроны смогут обеспечить лучшее разрешение. Увы, в 1927 году Луи де Бройль опубликовал работу, ознакомившись с которой Руска приуныл: выходило, что с электроном, как и со всякой материальной частицей, связана некая волна. Руска так хотел обойти теоретические ограничения оптики — и на тебе: его микроскоп тоже подчиняется законам волновой физики, в частности, не свободен от явлений вроде дифракции. Но трудности его не остановили: в 1932 году Руска показал, что предел разрешения электронного микроскопа не хуже 0,22 нм. И воспрял духом: это обещало, в теории, возможность видеть атомы!

Так начинался тот спектакль. К концу 1930-х годов увеличение электронного микроскопа достигло 30 тыс. раз, а в 1950-е уже измерялось сотней тысяч раз. Чтобы увидеть атом, требовалось умножить эти цифры еще хотя бы на тысячу.

Колыбелью прогресса стала компания Telefunken: молодые ученые пытались решить сложнейшие технические задачи, параллельно развивая телевидение. И чего они только не пробовали: подбирали режим пропускания электронов через образец, преломление, сканирующие метания тонюсенькой электронной кисточки, сочетали все это… но увидеть атом не удавалось. Только в 1970 году на экране электронного микроскопа появились первые изображения атомов, но случилось это не в Германии, а в Соединенных Штатах, где создали электронный микроскоп в одно и то же время и просвечивающий, и сканирующий.

Поделиться:
Популярные книги

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Пятое правило дворянина

Герда Александр
5. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пятое правило дворянина

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды