Наука и психическое здоровье (книга 2)
Шрифт:
Нам даже не требуется подчеркивать полное понимание события. Простых примеров, которые позволяют продемонстрировать это на уровне здравого смысла – скажем, то, что мы узнаем как «карандаш» – это не «всё», тут вполне достаточно. Ни у кого не будет трудностей, при условии, что он обучится в этом направлении, с постоянным и инстинктивным вспоминанием о свободно свисающих нитях (B’), (B’’), которые обозначают неабстрагированные или выпущенные характеристики и помогают натренироваться в неотождествлении.
С помощью наглядного пособия с.р студента тренируются через все нервные центры. Он видит, осязает. , свисающие нити, а также слышит о них. Это дает максимальную вероятность того, что воздействие будет оказано на организм как целое. Таким образом «интеллектуальная» теория задействует механизмы «чувств», ощущений и рефлексов.
Подобная же структурная ситуация обнаруживается при работе с абстракциями высшего порядка. Слово, название или утверждение передается в устной или письменной форме, и сначала воздействует на низшие центры, а потом абстрагируется и преобразуется далее высшими центрами. В общем, такой порядок не меняется и справедлив для случая, когда устные вопросы невидимы и неслышимы, а производятся внутри нас самих. Большинство «импульсов», «интересов», «смыслов», «оценок». , производятся в низших центрах и следуют обычным курсом от низших центров к высшим. Когда «переживание» (реакция низших центров) преобразуется в «воспоминание» (высшие центры). , порядок также подобный. Трудности возникают тогда, когда этот порядок патологически обращается и «идеи» начинают оцениваться как опыт, слова как объекты, . В построении языка можно наблюдать похожий процесс. Мы наблюдаем абсолютных индивидуумов, с которыми мы действительно имеем дело, обозначаем их индивидуальными названиями, скажем, A1, A2, . . . , A11, A12, . . . , A21, A22, . . . , A31, A32, . . . , . Через процесс абстрагирования и игнорирования, например, характеристик, обозначенных индексом «1», мы можем оставить только те, которые обладают характеристиками с индексами 2, 3, . . . , 9, 22, 23, . . . , 29, . Проигнорировав характеристики с индексом «2», мы оставим только те, что обозначены как 3, 4, . . . . 9, 33, 34 . . . . , 39, . Наконец, если мы исключим все индивидуальные характеристики и индексы, то получим «общее» название А для всей группы, не выделяя в ней никаких индивидуальных характеристик.
Все слова типа «человек», «животное», «дом», «стул», «карандаш». , были построены подобным процессом абстрагирования, или игнорирования, индивидуальных отличий. В каждом случае игнорирования индивидуальных характеристик был задействован новый нейрологиче-ский процесс.
Подобное же происходит с «утверждениями об утверждениях». Когда мы слышим некое утверждение или видим его в письменной форме, оно становится стимулом, который поступает через низшие центры, и утверждение о нем представляет собой, вообще говоря, новый процесс абстрагирования, или абстракцию высшего порядка.
Становится очевидно, что введение языка «различных порядков абстракции», хотя он и не является привычным, тем не менее структурно весьма близко соответствует в терминах порядка наиболее фундаментальным нейрологическим процессам, которые происходят в нас. Как нам уже известно, естественный порядок был установлен эволюцией; а именно: сначала абстракции низшего порядка, потом высшего; отождествление порядков или обращение порядков представляется для человека патологией и проявляется как смешивание порядков абстракций, которое приводит к ложной оценке: отождествлению, иллюзиям, бреду и галлюцинациям.
Исторически первыми, кто обратил серьезное внимание на вышеописанную проблему систематическим образом, хоть и в ограниченном объеме, были математики. При исследованиях проблем фундаментальных основ математики, математической «логики» и теории множеств, мы натолкнулись на противоречия, которые сделали бы математику невозможной. Во избежание этой беды Рассел (Russell) изобрел нечто, названное им «теорией математических типов». Статус этой теории очень интересен и поучителен. Эта теория решает математические трудности, спасая таким образом математику, но у нее нет никакого применения в жизни. Практически все математики, если я не ошибаюсь, включая самого автора теории, как-то «не любят» эту теорию и стараются решать задачи другими способами и по возможности вообще избегать этой теории.
Мы уже показали, что введение языка «различных порядков абстракции» структурно полностью обоснованно и физиологически естественно, поскольку он описывает в терминах «порядка» деятельность нервной системы. Такие факты важны; но если, кроме того, введение языка новой A структуры позволит нам и далее демонстрировать его преимущества, то введение такого языка стало бы всё более желательным.
Несмотря на то, что большинство математиков «не любит» теорию типов, эта теория, тем не менее, безусловно является необходимой для несамопротиворечивой математики. Автор был приятно удивлен, обнаружив, что после того, как была сформулирована его A – система, эта простая и естественная, действенная, функциональная, применимая, нон-эл теория оказалась перекрывающей и обобщающей теорию математических типов, делая эту теорию применимой не только в области решения математических парадоксов, но также в отношении большинства чисто человеческих и научных проблем. Одно общее правило «несмешивания порядков абстракций» и приобретение простой и полезной «осознанности абстрагирования», основанной на отказе от отождествляющего «есть», предоставляет полное структурное и семантическое решение. Игнорирование связанных с этим вопросов неизбежно приводит к возникновению бесконечных и никому не нужных человеческих страданий и бед, устранение которых является одним из основных моментов теории психического здоровья. В 1933 году не является тайной то, что постоянное получение небольших болезненных шоков может привести к серьезным семантическим и физическим расстройствам. Психо-логикам и психиатрам будет всё труднее и труднее работать над стоящими перед ними проблемами, если они продолжат игнорировать эти семантические моменты. Родители и учителя обнаружат простые, но очень эффективные структурные средства для тренировки здоровых реакций у детей, со всеми соответствующими семантическими выгодами для людей и для общества.
Когда Уайтхед (Whitehead) и Рассел (Russell) работали над основаниями математики, они столкнулись с бесконечными парадоксами и противоречиями в себе, которые, конечно, сделали бы математику невозможной. Приложив множество усилий, они обнаружили, что у этих всех парадоксов был один общий источник, грубо говоря - выражения, которые содержали слово «все», и решение было найдено во введении «невсеобщности», семантического предшественника неотождествления. Рассмотрим для примера «утверждение обо всех утверждениях». Они обнаружили, что подобные обобщения, или «общие» утверждения, были незаконными, поскольку они с самого начала противоречили самим себе. Невозможно законным образом сделать утверждение обо «всех» утверждениях без какого-либо ограничения, поскольку оно бы включило в себя и это новое только что сделанное утверждение. Если рассмотреть м.п термин, такой как «утверждение», а таковые мы можем производить безо всякого ограничения, и вспомнить о том, что любое утверждение об утверждениях принимает форму утверждения, то, очевидно, мы не можем делать утверждения обо всех утверждениях. В подобных случаях это утверждение должно быть ограничено; у такого набора нет общей суммы, и утверждение обо «всех его членах» нельзя сделать законным образом. Подобным же образом, мы не можем говорить обо всех числах.
Утверждения типа «утверждения обо всех утверждениях» были названы Расселом «незаконными обобщениями». В подобных случаях необходимо подразделить данный набор на более мелкие наборы, каждый из которых может быть обобщен. В общих чертах это и есть суть формулировки цели теории типов. На языке Principia Mathematica тот принцип, который дает нам возможность избежать незаконных обобщений, можно выразить следующим образом: «То, что касается всего множества, не должно являться одним из этого множества», или «Если, при условии, что у определенного множества есть общая сумма, в нем найдутся члены, определимые только в терминах этой общей суммы, то у рассматриваемого множества нет никакой общей суммы». 1 Вышеуказанный принцип называется «принципом порочного круга», поскольку он позволяет нам избавиться от порочных кругов, которые порождаются введением незаконных обобщений. Рассел называет споры, которые связаны с принципом порочного круга», «заблуждениями порочного круга».
В качестве примера Рассел дает двузначный закон «исключенного третьего», сформулированный в виде «все утверждения являются либо истинными, либо ложными». Мы впадаем в заблуждение порочного круга, если начинаем утверждать, что закон исключенного третьего принимает форму утверждения, и, следовательно, может оцениваться как истинный или ложный.
Прежде чем мы сможем сделать какое-либо утверждение обо «всех утверждениях» законным, нам нужно ограничить его некоторым образом, так, чтобы утверждение об этом множестве не входило в само это множество.
Другим примером заблуждения порочного круга может послужить некий воображаемый скептик, который заявляет, что он ничего не знает, и в ответ получает опровергающий вопрос -а знает ли он, что он ничего не знает! Прежде чем заявление этого скептика станет значимым, он должен неким образом ограничить количество фактов, в отношении которых он проявляет свое «невежество», иначе он сделает незаконное обобщение. Когда же такое ограничение наложено, и он заявляет, что он невежественен в отношении экстенсиональной последовательности утверждений, и его утверждение о собственном невежестве не является членом этой последовательности, то подобный скептицизм опровергнуть подобным образом невозможно.