(Не)совершенная случайность. Как случай управляет нашей жизнью
Шрифт:
Те, кто давал невысокую вероятность, в чем-то были правы: если вы выделяете именно Билла Миллера именно в начале 1991 г. и вычисляете вероятность того, что по чистой случайности именно тот человек, которого вы выбрали, покажет результаты выше рыночных строго за последующие пятнадцать лет, тогда возможность и в самом деле окажется невероятно низкой. У вас была бы такая же вероятность, если бы вы подбрасывали монету раз в год пятнадцать лет, поставив цель: чтобы каждый раз выпадал орел. Но, как и при анализе пробежек до дома, совершенных Роджером Марисом, эта возможность несущественна, так как работают тысячи управляющих паевыми инвестиционными фондами (более 6 тыс. на данный момент), и было много пятнадцатилетних периодов, когда подвиг Миллера мог бы быть повторен. Уместно задать вопрос: если тысячи людей подбрасывают монеты раз в год и делают это десятилетиями, каковы
Конкретизирую: предположим, каждый из 1 тыс. инвестиционных управляющих — разумеется, на самом деле их гораздо больше — бросал монету раз в год начиная с 1991 г., когда у Миллера началась полоса удачных периодов. По прошествии первого года примерно у половины управляющих выпал бы орел, после двух лет приблизительно у четверти орел выпал бы дважды, после трех — где-то у одной восьмой орел выпал бы три раза, и так далее, затем кто-то, у кого выходила решка, начал бы выбывать из игры, но это не повлияло бы на результат, так как они уже проиграли. Шансы, что после пятнадцати лет у определенного участника эксперимента все время выпадал только орел, равны одному из 32 768. А шансы любого из 1 тыс. управляющих, кто начал подбрасывать монеты в 1991 г., получать только орла гораздо выше — примерно 3%. Наконец, вовсе не обязательно принимать во внимание исключительно тех, кто начал бросать монеты в 1991 г. Управляющие могли бы начать в 1990 г., или 1970 г., или в любой другой год эры, ознаменованной деятельностью современных паевых инвестиционных фондов. Поскольку авторы «The Consilient Observer» анализировали только сорокалетний период, я подсчитал вероятность того, что по случайности некоторые управляющие в последние четыре десятилетия «обгоняли» рынок каждый год на протяжении некого отрезка в пятнадцать лет или более. Это допущение снова увеличивает вероятность, которая составила бы приблизительно 3 из 4. Таким образом, вместо того, чтобы удивляться удачной полосе Миллера, я бы сказал следующее: если никто не достиг его результатов, есть все основания подать жалобу на высокооплачиваемых управляющих, которые работали хуже, чем им позволяло простое везение.
Заблуждения «легкой руки» были проиллюстрированы выше примерами из мира спорта и финансов, однако серии побед и другие специфические модели успеха и поражения встречаются во всех сферах. Иногда преобладают удачи, иногда — провалы, но и то, и другое играет важную роль, так как дает нам понять: модели, в том числе и последовательности, которые выглядят закономерными, на самом деле не что иное, как следствие случайности. Поэтому, оценивая других, важно отдавать себе отчет, что, находясь среди большого числа людей, вы едва ли встретите того, кто никогда не переживал продолжительный период удач или поражений.
Никто не поверил в сомнительный успех Леонарда Коппетта, как никто бы не принял всерьез человека, играющего в орлянку, но многие доверились Биллу Миллеру. Хотя тип примененного мною анализа, по видимости, ускользнул от многих экономических обозревателей, для тех, кто изучает Уолл-стрит с научных позиций, он не стал новостью. Например, лауреат Нобелевской премии экономист Мертон Миллер (не родственник Билла) писал: «Если 10 тыс. человек взглянут на акции и попытаются выбрать самые доходные, один из 10 тыс. попадет в цель по чистой случайности, что и происходит в реальности. Это игра наудачу — люди думают, будто они делают нечто целенаправленно, а на самом деле это не так{213}». Все мы должны делать выводы сообразно обстоятельствам, и представление о том, что такое случайность и как она действует, уберегает от наивных выводов.
Выше было показано, как последовательности случайных событий, развивающихся во времени, могут ввести нас в заблуждение. Но закономерности в случайных последовательностях, обнаруженные в пространстве, так же могут сбить с толку. Ученые знают, что самый лучший способ раскрыть значение данных — представить их в виде картинки или графика. При таком способе толкования значимые связи, которые иначе могли бы остаться незамеченными, становятся очевидными. Расплачиваемся мы за это тем, что видим закономерности там, где их на самом деле нет.
Фотография работы Франка Деджина «Эффект Тинкербелл», опубликованной в издании журнала «Исследования в области сознания», выпуски 5–6 (май-июнь 2002 г.)
Эта картинка не вполне похожа на изображение человека, но общие черты угадываются, и, увидев младенца, изображенного на ней, вы, скорее всего, узнали бы его. Если взглянуть на эту страницу с расстояния вытянутой руки и скосить взгляд, недостатки изображения можно и не заметить. Теперь рассмотрим следующую последовательность X и О:
Здесь мы видим прямоугольные кластеры, особенно в углах — они выделены жирным шрифтом. Если X и О представляют интересующие нас события, возникает соблазн задать вопрос: не обозначают ли эти кластеры что-нибудь? Но какое бы значение им ни приписали, оно будет неверным, поскольку это та же самая последовательность из 200 X и О, что и выше, только теперь она записана в 5 строк по 40 символов в каждой и несколько элементов выделены жирным.
Эта тема вызвала немалый интерес в конце Второй мировой войны, когда ракеты Фау–2 посыпались на Лондон. Ракеты наводили ужас, их скорость в пять раз превышала скорость звука, так что услышать, как они приближаются, можно было только после попадания. Вскоре в газетах опубликовали карты обстрелов, где, на первый взгляд, просматривались определенные закономерности. Кому-то показалось, будто расположение мест попадания ракет свидетельствует об управляемости траектории их полета, а это, принимая во внимание пройденное ракетой расстояние, предполагало, что немецкие технологии превзошли все возможные ожидания. Гражданское население строило догадки о немецких шпионах, которые якобы жили в не затронутых бомбежкой районах. Командование беспокоилось об ужасных последствиях в случае, если немцы направят ракетные установки на стратегически важные военные объекты.
В 1946 г. математический анализ ракетных обстрелов Лондона был опубликован в «Джорнал оф де Инститьют оф Актуариз [16] ». Автор статьи, Р.Д. Кларк, разделил интересующую его территорию на 576 квадратов со стороной в 500 метров. Из них 229 квадратов уцелели при ракетных ударах, несмотря на их небольшой размер, в 8 квадратах было зафиксировано по четыре-пять ударов. Тем не менее анализ Кларка показал, что, как и в случае с данными при подбрасывании монет, общая модель соответствовала принципу случайного распределения {214} .
16
Журнал Института статистиков страхового общества (актуариев)
Подобные вопросы часто возникают в отчетах по кластер-эффекту. Если разделить любой город или страну на квадраты и произвольно распределить случаи заболевания раком, в некоторых зонах получится меньше случаев, в некоторых — больше. По словам Раймонда Ричарда Нойтры, главы Отдела по контролю заболеваний, связанных с окружающей средой и профессиональной деятельностью, Департамент здравоохранения штата Калифорния, при изучении учетных записей случаев онкологических заболеваний — базы данных, в которую занесены случаи заболевания десятками различных форм рака в определенной местности — для 5 тыс. переписных районов можно было бы ожидать, что будет обнаружено 2 750 случаев со статистически значимой, но случайной частотностью некоторых из форм заболевания{215}. Если рассмотреть достаточно большое количество подобных квадратов, можно обнаружить некоторые регионы, где случаи заболевания раком выявляются гораздо чаще.