Чтение онлайн

на главную

Жанры

Необъятный мир: Как животные ощущают скрытую от нас реальность
Шрифт:

О фундаментальном характере этой проблемы можно судить по тому, что очень разные создания решали ее одним и тем же способом[274]. Когда животное собирается совершить движение, его нервная система подает моторную (двигательную) команду – набор нейронных сигналов, сообщающих мышцам, что им сделать. Однако по пути к мышцам эта команда дублируется. Ее копия отправляется к сенсорным системам, которые на ее основе моделируют последствия предполагаемого движения. И когда движение совершается, у чувств уже спрогнозирован самопроизведенный сигнал, который они сейчас получат. Сравнивая этот прогноз с действительностью, они определяют, какие сигналы поступили из внешнего мира, и реагируют на них соответственно[275]. Все это происходит без участия сознания и, несмотря на всю свою контринтуитивность, играет ключевую роль в нашем восприятии мира. Информация, получаемая

системами чувств, – это всегда смесь самопроизведенных (реафферентационных) и инопроизведенных (экзафферентационных) сигналов, которые животные различают благодаря тому, что первую разновидность их нервная система постоянно моделирует.

Философы и ученые размышляют об этом процессе уже не первое столетие{826}. В 1613 г. фламандский физик Франсуа д'Агилон писал, что «движение глаз осмысляется внутренним навыком души». В 1811 г. немецкий врач Иоганн-Георг Штейнбух рассуждал о Bewegideen, «двигательных идеях» – сигналах мозга, которые управляют движениями и взаимодействуют с сенсорной информацией. В 1854 г. другой немецкий врач, Германн фон Гельмгольц, описывал Bewegidee как Willensanstrengung, «усилие воли». В 1950 г. дублированные двигательные команды стали называть эфферентными копиями или – мой любимый термин в этом перечне – сопутствующими разрядами[276]{827}. У каждого из этих понятий есть свои нюансы, но суть одна: при любом своем движении животное неосознанно создает зеркальную копию собственной воли, на основании которой прогнозирует сенсорные последствия своих действий. При каждом действии сенсорные системы получают предупреждение о том, чего им ожидать, а значит, могут соответствующим образом подготовиться.

Много сведений о сопутствующих разрядах было получено в ходе изучения мормировых рыб, которые с их помощью координируют свои электрические чувства{828}. Как мы помним из десятой главы, у мормировых имеется три разных типа электрорецепторов. Один тип улавливает электрические импульсы самой рыбы. Второй – коммуникационные сигналы других мормировых. Третий различает более слабые электрические поля, создаваемые потенциальной добычей[277]. Чтобы вторая и третья разновидности могли функционировать, рыбе нужно игнорировать собственные электрические импульсы, и она добивается этого за счет сопутствующих разрядов. Они возникают при каждом срабатывании электрического органа, подготавливая те области мозга, которые принимают сигналы от рецепторов второго и третьего типа, к тому, чтобы игнорировать собственные импульсы. Так мормировая рыба получает возможность отличать сигналы, пассивно исходящие от потенциальной добычи, от тех, которые активно генерируются другими электрическими рыбами, и тех, которые активно производятся ею самой.

Электрические рыбы – создания исключительные, но «какой-то более или менее аналогичный механизм есть почти у всех животных», объясняет мне Брюс Карлсон. Это из-за сопутствующих разрядов мы не можем пощекотать сами себя: мы автоматически прогнозируем ощущение, которое вызовем у себя движущимися пальцами, и этот прогноз обнуляет испытываемое в реальности. Это за счет них мы воспринимаем зрительное изображение как стабильное, хотя глаза у нас постоянно бегают[278]. Это они позволяют стрекочущим сверчкам отрешиться от своего собственного стрекота{829}. Это благодаря им рыбы не путают кильватерную струю от других рыб с потоком, который создают сами, а дождевые черви спокойно роют ходы, не отдергиваясь рефлекторно при каждом соприкосновении с почвой[279].

Эти невероятные достижения настолько глубинны, что мы не видим здесь ничего необычного. Нам кажется само собой разумеющимся владеть своим телом, существовать в окружающем мире и отличать первое от второго. Но эти способности не аксиома. Отличать себя от другого – не данность, а трудная задача, которую приходится решать нервной системе. «В этом, по большому счету, и состоит сознание, – говорит нейробиолог Майкл Хендрикс. – И возможно, для этого оно и существует: это процесс сортировки перцептивных ощущений на порождаемые самим животным и порождаемые другими».

Для этой сортировки не требуется самосознание или развитые умственные способности. «Это не какое-то нововведение, появившееся только на недавнем этапе эволюции», – говорит Хендрикс. Она доступна нервной системе и насчитывающей всего несколько сотен нейронов, и состоящей из десятков миллиардов. Это фундаментальное условие существования животного, проистекающее из простейших актов ощущения и движения. Животное не может уяснить, что происходит вокруг, не разобравшись сперва, что происходит с ним самим.

А это значит, что умвельт животного – результат работы не только его органов чувств, но и всей его нервной системы, действующей гармонично и слаженно. Если бы органы чувств были каждый за себя, ничего бы не складывалось. На протяжении всей книги мы изучали чувства в отрыве друг от друга, но, чтобы понять их по-настоящему, нужно рассмотреть их как составляющие единого целого.

На Всемирном фестивале науки в июне 2019 г. в ходе круглого стола, посвященного умственным способностям животных, психолог Фрэнк Грассо представил публике самку осьминога бимака по кличке Квалиа. Ей он, в свою очередь, предложил банку с черной крышкой, в которой находился вкусный краб. По задумке Грассо, Квалиа должна была отвинтить крышку и достать краба – этот салонный фокус, которые проделывают многие осьминоги, часто приводят как доказательство их ума. Квалиа открутила за свою жизнь немало крышек, но Грассо предупредил собравшихся, что она может «закапризничать и предпочесть отсидеться в углу». Разумеется, именно так она и поступила. Точно так же она ведет себя и теперь, месяц спустя, когда я пришел к Грассо в его нью-йоркскую лабораторию.

В былые времена Квалиа при появлении незнакомцев подплывала к передней стенке аквариума, но сейчас, в преклонные годы, она забивается в угол. В роли примы лаборатории ее сменила другая самка бимака по кличке Ра. Вот она энергично пробирается боком вдоль аквариумной стенки, прижимаясь присосками к стеклу. Двое студентов Грассо опускают в ее аквариум банку с крабом, и Ра ныряет за ней. Щупальца оплетают крышку, кожа осьминога темнеет… и ничего не происходит. Она как будто теряет интерес и уносится прочь. Чуть позже она вытягивает одно щупальце и касается банки, но тут же убирает его. Крышка не откручена, краб не съеден. «А ведь когда-то обе они с упоением открывали эти банки», – вспоминает Грассо. Но теперь они не хотят утруждаться. На неупакованного краба они кидаются с готовностью, упакованного совершенно определенно способны добыть. Они просто этого не делают. Грассо задается вопросом, видят ли вообще осьминоги этого краба в банке. «Может, они открывали все эти крышки из чистого любопытства, им интересно было возиться с незнакомым предметом, – рассуждает он. – А разглядеть сквозь выгнутое стекло, есть ли внутри краб, они не в состоянии».

Чтобы разобраться, почему осьминог откручивает крышку банки и почему перестает это делать, нужно понять его умвельт. Для начала можно изучить его глаза, присоски и другие органы чувств по очереди. Но после этого нам необходимо будет уяснить, как работает нервная система осьминога целиком, как она управляет телом, обладающим почти безграничной гибкостью, и как мозг и тело осьминога совместными усилиями создают даже не один умвельт, а, вполне вероятно, целых два.

Центральная нервная система осьминога состоит примерно из 500 млн нейронов – исполинское для беспозвоночного число, сравнимое с показателями мелких млекопитающих[280]{830}. Но только треть этих нейронов находится в голове осьминога, в центральном мозге и фланкирующих его зрительных долях, принимающих информацию от глаз. Остальные 320 млн располагаются в щупальцах. У каждого щупальца «имеется большая и относительно полная нервная система, которая практически не сообщается с другими щупальцами, – писала когда-то Робин Крук. – То есть, по сути, у осьминога девять мозгов, каждый из которых себе на уме»{831}.

Даже любая из имеющихся на каждом щупальце трехсот присосок обладает определенной долей самостоятельности. Коснувшись поверхности, присоска принимает нужную форму, позволяющую плотно прижаться к этой поверхности ободком, а затем присасывается, уменьшая давление внутри себя. При этом она осязает поверхность и пробует ее на вкус благодаря 10 000 механо- и хеморецепторам, расположенным на ободке{832}. Если для нашего языка вкусовые и осязательные характеристики того, что попадает нам в рот, – это разные свойства, то для осьминога, учитывая нейронную прошивку его присоски, все, вероятно, иначе. Вкус и осязание для него «скорее всего, неразрывно переплетены», примерно по принципу синестезии у человека, объясняет мне Грассо. В зависимости от вкуса, который она нащупывает, или текстуры, которую она пробует, присоска может либо продолжить присасываться, либо отлепиться. И это решение она принимает сама, поскольку каждая из осьминожьих присосок оснащена собственным мини-мозгом – специализированным нервным узлом, который называется присосковым ганглием. Особенно заметна избирательность присосок при наблюдении за щупальцами, отделенными от тела: их часто обнаруживают прикрепившимися к рыбам, но они никогда не клеятся к другим щупальцам своего обладателя{833}.

Поделиться:
Популярные книги

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Обыкновенные ведьмы средней полосы

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Обыкновенные ведьмы средней полосы

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Гром над Тверью

Машуков Тимур
1. Гром над миром
Фантастика:
боевая фантастика
5.89
рейтинг книги
Гром над Тверью

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Сонный лекарь 4

Голд Джон
4. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 4

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая