Неорганическая химия
Шрифт:
Так как растворимость характеризует истинное рав–новесие, влияние внешних условий на это состояние (давления, температуры) можно качественно оценить, воспользовавшись принципом Ле Шателье. Подобные оценки необходимы в практике глубоководных погруже–ний, при работе в горячих цехах и т. п.
15. Растворимость газов в жидкостях. Законы Генри—Дальтона и Сеченова
Растворение газов в жидкостях почти всегда сопро–вождается выделением теплоты. Поэтому раствори–мость газов с повышением температуры согласно принципу Ле Шателье понижается. Эту закономер–ность часто используют для удаления растворенных га–зов из воды (например С02 )
Газ не растворяется в жидкости беспредельно. При не–которой концентрации газа X устанавливается равно–весие:
При растворении газа в жидкости происходит значи–тельное уменьшение объема системы. Поэтому повы–шение давления согласно принципу Ле Шателье долж–но приводить к смещению равновесия вправо, т. е. к увеличению растворимости газа. Если газ малораст–ворим в данной жидкости и давление невелико, то растворимость газа пропорциональна его давлению. Эта зависимость выражается законом Генри (1803г.): количество газа, растворенного при данной тем–пературе в определенном объеме жидкости, при равновесии прямо пропорционально давлению газа.
Закон Генри может быть записан в следующей форме:
с (Х) = Kr(X) x P(X)
где – концентрация газа в насыщенном раство–ре, моль/л;
P(X) – давление газа X над раствором, Па;
Kr(X) – постоянная Генри для газа X, мольxл-1 x Па– 1 .
Константа Генри зависит от природы газа, рас–творителя и температуры.
Закон Генри справедлив лишь для сравнительно раз–бавленных растворов, при невысоких давлениях и отсут–ствии химического взаимодействия между молекулами растворяемого газа и растворителем.
Закон Генри является частным случаем общего закона Дальтона. Если речь идет о растворении не одного газооб–разного вещества, а смеси газов, то растворимость каж–дого компонента подчиняется закону Дальтона: раство–римость каждого из компонентов газовой смеси при постоянной температуре пропорциональна парциаль–ному давлению компонента над жидкостью и не зави–сит от общего давления смеси и индивидуальности других компонентов.
Иначе говоря, в случае растворения смеси газов в жидкости в математическое выражение закона Генри вместо подставляют парциальное давление р! дан–ного компонента.
Под парциальным давлением компонента понимают долю давления компонента от общего давления газовой смеси:
Рi/ Робщ
Парциальное давление компонента рассчитывают по формуле
Изучая растворимость газов в жидкостях в присутст–вии электролитов, русский врач-физиолог И. М. Сече–нов (1829—1905) установил следующую закономерность (закон Сеченова): растворимость газов в жидкостях в присутствии электролитов понижается; происходит высаливание газов.
Рi = Робщ x(Xi)
где pi – парциальное давление компонента Хi;
Робщ – общее давление газовой смеси;
х(Хi) – молярная доля i-ого компонента.
Изучая растворимость газов в жидкостях в присутствии электролитов, русский враччфизиолог И. М. Сеченов (1829—1905) установил следующую закономерность (закон Сеченова): растворимость газов в жидкостях в присутствии электролитов понижается; происходит высаливание газов.
16. Роль диффузии в процессах переноса веществ в биологических системах
Диффузия играет важную роль в биологических си–стемах. Прежде всего перемещение питательных ве–ществ и продуктов обмена в тканевых жидкостях проис–ходит посредством диффузии. Кроме того, во многих случаях скорость физико-химических процессов в жи–вых организмах определяется скоростью диффузии реа–гирующих веществ, так как диффузия реагентов, как правило, является наиболее медленной стадией про–цесса, в то время как биохимические реакции при учас–тии ферментов протекают очень быстро.
Всякая живая клетка окружена мембраной, которая служит для защиты и регуляции внутриклеточной сре–ды. Вещества проходят через мембраны по двум ос–новным механизмам: путем обычной диффузии (пас–сивный транспорт) и энергетически активированного переноса (активный транспорт).
Внутренний слой мембраны состоит из углеводород–ных цепей. Поэтому многие небольшие нейтральные молекулы и неполярные молекулы НМС растворимы в этом слое и могут проходить через мембрану путем обычной диффузии по градиенту концентрации. Такой транспорт веществ называется пассивным.
Диффузия играет большую роль в процессе насыще–ния крови кислородом в легких. Вследствие большой разветвленности поверхность альвеол легких велика (~ 80 м2 ), поэтому кислород активно растворяется в плаз–ме и попадает в эритроциты. Венозная кровь обеднена кислородом – концентрация кислорода в венозной крови стремится к нулю. Следовательно, градиент кон–центрации кислорода между атмосферой и кровью, по–ступающей в легкие, высокий, что приводит к активно–му поглощению (по закону Фика).
Перенос веществ из области с меньшей кон–центрацией в область с большей концентрацией против градиента называется активным транспортом. Такой процесс не может идти самопроизвольно и тре–бует энергетических затрат. Источником энергии яв–ляется экзоэргоническая реакция гидролиза бионеорга–нического соединения – аденозинтрифосфата (АТФ).
Устойчивое стационарное распределение концент–раций ионов К внутри и вне клетки достигается, когда поток ионов К через мембрану внутрь клетки становит–ся равным потоку ионов К из клетки, возникающему вследствие пассивной диффузии. Аналогично дости–гается распределение (ионный гомеостаз) и для ионов Na, только активный транспорт и компенсирующая пас–сивная диффузия ионов направлены противоположно со–ответствующим потокам ионов К.
Процесс диффузии находит широкое применение в медицине. Так, например, метод диализа, основан–ный на избирательности диффузии низкомолекуляр–ных веществ через полупроницаемую мембрану вдоль градиента концентрации, используется в клинической практике при создании аппарата «искусственная поч–ка». Частицы ВМС не проходят через полупроницаемую мембрану, поэтому биологические жидкости (напри–мер, плазму крови) можно методом диализа очистить от вредных низкомолекулярных веществ – «шлаков» (мочевины, мочевой кислоты, билирубина, аминов, из–бытка ионов К), накапливающихся при различных забо–леваниях. При очистке кровь больного, отведенная из вены, поступает в специальные камеры с полупрони–цаемыми мембранами, через которые НМС могут диф–фундировать и удаляться из плазмы.