Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует
Шрифт:
Так стоит ли всё ещё изучать теорию струн, или она должна быть объявлена несостоятельной, как предлагают некоторые? Тот факт, что многие надежды были обмануты и многие ключевые предположения остались недоказанными, может быть достаточно хорошей причиной для некоторых, чтобы оставить работу над теорией струн. Но это не является причиной, чтобы совсем остановить исследования.
Что если когда-нибудь в будущем кто-нибудь найдёт способ сформулировать теорию струн, который однозначно приведёт к стандартной модели физики частиц, будет фоново-независимым и будет жить только в трёхмерном несуперсимметричном мире, который мы наблюдаем? Даже если перспективы найти такую теорию кажутся незначительными, такая возможность есть, — подчёркивая общую
Так что теория струн определённо находится среди направлений, которые заслуживают большего исследования. Но должна ли она продолжать рассматриваться как доминирующая парадигма теоретической физики? Должна ли большая часть ресурсов, направляемых на решение ключевых проблем в теоретической физике, продолжать поддерживать исследования в струнной теории? Должны ли другие подходы продолжать сидеть на голодном пайке в пользу теории струн? Должны ли только струнные теоретики быть пригодными для большинства престижных рабочих мест и исследовательских сообществ, как это имеет место сейчас? Я думаю, ответ на все эти вопросы должен быть: нет. Теория струн не достаточно успешна на любом уровне, чтобы оправдывать складывание почти всех наших яиц в её корзину.
А что если нет других достойно работающих подходов? Некоторые струнные теоретики защищают поддержку теории струн, поскольку она является «единственной игрой в городе». Я должен буду обосновать, что даже если это и так, мы должны будем сильно поощрять физиков и математиков на исследование альтернативных подходов. Если там нет новых идей, ну, тогда будем немного изобретать. Поскольку не имеется надежды, что теория струн в ближайшее время сделает фальсифицируемые предсказания, тут нет особенной спешки. Давайте поощрим людей на поиск быстрейшего пути к ответам на пять ключевых вопросов теоретической физики.
Фактически же имеются другие подходы — другие теории и исследовательские программы, которые нацелены на решение тех же пяти проблем. И, хотя большинство теоретиков сконцентрировались на теории струн, некоторые люди сделали немалый прогресс в развитии этих других областей. Наиболее важно, что имеются намёки на новые экспериментальные открытия, не предугаданные теорией струн, которые, если подтвердятся, сориентируют физику в новых направлениях. Эти новые теоретические и экспериментальные разработки являются темой следующей части книги.
III
За пределами теории струн
13
Сюрпризы реального мира
Греческий философ Гераклит оставил нам прекрасный афоризм: природа любит скрываться. Это так часто верно. У Гераклита не было способа увидеть атом. Не важно, насколько много его приятели-философы рассуждали по этому поводу, увидеть атом было вне пределов любой технологии, которую они могли представить. В наши дни теоретики нашли великое применение склонности природы к загадочности. Если природа на самом деле суперсимметрична или имеет больше трёх пространственных измерений, она это хорошо скрывает.
Но иногда верно противоположное. Иногда ключевые вещи находятся прямо перед нами, готовые к наблюдению. Скрытыми от незамысловатого взгляда Гераклита были легко воспринимаемые факты, которые мы теперь принимаем на веру, вроде принципа инерции или постоянного ускорения падающих объектов. Наблюдения Галилея за движениями на Земле не использовали телескопы или механические часы. Насколько я знаю, они могли бы быть проделаны и во времена Гераклита. Он только должен был задать правильные вопросы.
Итак, хотя мы горевали, как тяжело проверять идеи, идущие за теорией струн, нам стоит поинтересоваться, что может быть спрятано вокруг от нашего обычного взгляда. В истории науки было множество примеров открытий, которые удивляли учёных, поскольку они не предугадывались теорией. Нет ли сегодня наблюдений, которые мы, физики, не запрашивали, которые не навлекли на себя теорию, — наблюдений, которые могли бы подвинуть физику в интересном направлении? Нет ли шанса, что такие наблюдения уже были сделаны, но проигнорированы, поскольку, если они подтвердятся, они могли бы помешать нашим теоретизированиям?
Ответ на эти вопросы: да. Имеется несколько недавних экспериментальных результатов, которые указывают на новые явления, непредвиденные для большинства струнных теоретиков и физиков, занимающихся частицами. Ни один полностью не установлен. В нескольких случаях результаты достоверны, но интерпретации спорны; в других случаях результаты слишком новы и удивительны, чтобы быть широко принятыми [76] . Но их стоит описать здесь, поскольку, если любая из этих подсказок выльется в настоящее открытие, тогда имеются важные свойства фундаментальной физики, которые не предсказываются ни одной из версий теории струн, и будет тяжело согласоваться с ними. Другие подходы тогда станут основными, а не факультативными.
76
Часто случается, что удивительные экспериментальные результаты не подтверждаются, когда другие экспериментаторы повторяют эксперимент. Это не означает, что кто-то мошенничает. Эксперименты на грани возможного почти всегда тяжелы для повторения, и типичная трудность заключается в отделении шума от осмысленного сигнала. Часто требуется много лет и много попыток различных людей, прежде чем все источники ошибок в новом виде эксперимента будут поняты и удалены.
Начнём с космологической константы с целью представить тёмную энергию, ускоряющую расширение вселенной. Как обсуждалось в главе 10, эта энергия не была предугадана ни теорией струн, ни большинством других теорий, и у нас нет идеи, как установить её величину. Многие люди тяжело думали над этим на протяжении лет, и мы более или менее нигде. Я тоже не имею ответа, но у меня есть предложение, как мы могли бы найти его. Надо прекратить попытки оценить величину космологической константы в терминах известной физики. Если нет способа оценить явление на основе того, что мы знаем, тогда, может быть, это знак, что нам нужно поискать что-то новое. Возможно, космологическая константа является симптомом чего-то другого, в таком случае она может иметь и другие проявления. Как нам поискать их или опознать их?
Ответ будет простым, поскольку универсальные явления, в конечном счёте, просты. Силы в физике характеризуются только несколькими числами — например, расстоянием, на которое распространяется сила, и зарядом, который говорит, насколько сила велика. Что характеризует космологическую константу, так это масштаб, который является масштабом расстояний, выше которых она искривляет вселенную. Мы можем назвать этот масштаб R. Он порядка 10 миллиардов световых лет или 1027 сантиметров [77] . Что является странным в космологической константе, так это что её масштаб гигантский по сравнению с другими масштабами физики. Масштаб R в 1040 раз больше размера атомных ядер и в 1060 раз больше планковского масштаба (который составляет примерно 10– 20 от размера протона). Так что логично поинтересоваться, может ли масштаб R отражать некоторую совершенно новую физику. Хорошим подходом мог бы стать поиск явлений, которые происходят на том же самом громадном масштабе.
77
Выраженная в терминах R, космологическая константа равна 1/R2.